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Abstract
Aim: This paper presents the statistical bases for temporal beta‐diversity analysis, a 
method to study changes in community composition through time from repeated 
surveys at several sites. Surveys of that type are presently done by ecologists around 
the world. A temporal beta‐diversity Index (TBI) is computed for each site, measuring 
the change in species composition between the first (T1) and second surveys (T2). 
TBI indices can be decomposed into losses and gains; they can also be tested for 
significance, allowing one to identify the sites that have changed in composition in 
exceptional ways. This method will be of value to identify exceptional sites in space–
time surveys carried out to study anthropogenic impacts, including climate change.
Innovation: The null hypothesis of the TBI test is that a species assemblage is not 
exceptionally different between T1 and T2, compared to assemblages that could 
have been observed at this site at T1 and T2 under conditions corresponding to H0. 
Tests of significance of coefficients in a dissimilarity matrix are usually not possible 
because the values in the matrix are interrelated. Here, however, the dissimilarity 
between T1 and T2 for a site is computed with different data from the dissimilarities 
used for the T1–T2 comparison at other sites. It is thus possible to compute a valid 
test of significance in that case. In addition, the paper shows how TBI dissimilarities 
can be decomposed into loss and gain components (of species, or abundances‐per‐
species) and how a B–C plot can be produced from these components, which informs 
users about the processes of biodiversity losses and gains through time in space–
time survey data.
Main conclusion: Three applications of the method to different ecological communi‐
ties are presented. This method is applicable worldwide to all types of communities, 
marine, and terrestrial. R software is available implementing the method.
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1  | INTRODUC TION

Community ecology is the scientific study of the interactions among 
species in natural communities, their distribution through space and 
their evolution through time, and of the relationships between the 
species and their environment. Changes in community composi‐
tion through time are at the center of community ecology research 
(McEwan, Dyer, & Pederson, 2011; Pickett, Collins, & Armesto, 1987; 
Vellend, 2016), including the nature of these changes (e.g., gains and 
losses of species) and their quantitative importance.

In the spatial context, the variation in community composition 
among sites in a region of interest has been called beta diversity by 
Whittaker (1972), who defined the well‐known concepts of alpha, 
beta, and gamma diversities. In recent years, interest of ecologists 
and managers has turned to the study of the temporal variation 
in community composition, either at a single site or at a series of 
sites repeatedly surveyed across time. This temporal variation was 
called temporal beta diversity by Legendre and Gauthier (2014) and 
Shimadzu, Dornelas, and Magurran (2015). Temporal variation can 
be the result of gradual or abrupt changes in environmental condi‐
tions, including man‐induced alterations such as the present world‐
wide climate warming.

Statistical inference methods have been proposed for the analy‐
sis of temporal changes in community composition. For example, (a) 
the temporal convergence or divergence in composition of a set of 
communities can be studied by testing for differences in multivari‐
ate dispersion among surveys (Anderson, 2006); (b) shifts in mean 
composition of monitored communities can be statistically tested 
using multivariate analysis of variance procedures (Anderson, 2001; 
Legendre & Anderson, 1999), including null models (Schaefer, Gido, 
& Smith, 2005); (c) the interaction between the factors space and 
time and other complex spatio‐temporal structures can be stud‐
ied and tested for significance (Angeler, Viedma, & Moreno, 2009; 
Legendre, Cáceres, & Borcard, 2010; Legendre & Gauthier, 2014).

In several application fields, researchers want to compare obser‐
vations made at several sites and at two different times. The ques‐
tion of interest is as follows: are there sites where the difference 

between survey times seems exceptionally large? These sites would 
be worth examining in more detail to identify and compare the 
causes of the differences. Here are some examples. (a) In paleo‐
ecology, comparison of ancient and modern diatom communities 
preserved in lake sediment cores may indicate areas where acute an‐
thropogenic processes have singularly changed the surrounding land 
use (e.g., Winegardner, Legendre, Beisner, & Gregory‐Eaves, 2017). 
(b) When a strong natural or man‐made or environmental impact has 
taken place at a known point in time and an ecological community 
had been surveyed ahead of the impact, ecologists may survey that 
community again to determine how it was affected by the impact, 
and then how it may have recovered in later surveys (e.g., Legendre 
& Salvat, 2015). (c) In community ecology, when studying a perma‐
nent stem‐mapped forest dynamics plot divided into quadrats, ex‐
amining surveys made at two different times may indicate sections 
of the forest that have been exceptionally affected by a disturbance, 
for example, a climatic or anthropogenic event (e.g., Legendre & 
Condit, 2019).

This paper describes a method to test, for several sampling units 
(objects), the differences between data vectors corresponding to 
observations made at time 1 (abbreviated T1) and time 2 (T2). I will 
refer to these objects as sites in this paper, although they may be 
of other natures, for example, experimental enclosures. A dissimi‐
larity D computed between times T1 and T2 for a site, using com‐
munity composition (occurrences, frequencies or biomass) or gene 
frequency data, is called a temporal beta‐diversity Index (TBI); it mea‐
sures the change in community composition (or temporal beta di‐
versity) from T1 to T2. A change through time is directional; species 
presences, species abundances, or gene frequencies may have been 
gained and/or lost between T1 and T2. So, it will be of interest to 
examine the loss and gain components of the TBI indices, in addition 
to the TBI index values and their significance.

The observed data, assembled in matrices Mat.1 for time T1 and 
Mat.2 for T2 (Figure 1), may be of different kinds; in landscape ecol‐
ogy and genetics, the data are community composition or population 
gene frequencies observed at different sites, the same in the two 
surveys. (a) The null hypothesis (H0) to be tested in the statistical 

F I G U R E  1   Schematic representation 
of the first step of the method. Data in 
matrices Mat.1 (for Time 1) and Mat.2 
(for Time 2) are used to compute a vector 
of TBI dissimilarities Di for all sites i (data 
rows). For example, for site i = 1, vectors 
T11 and T21 are compared to compute D1, 
the dissimilarity between data at time 1 
(T1) and time 2 (T2)
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testing part of the method is that a site is not exceptionally differ‐
ent in community composition between T1 and T2, for presence–
absence or abundance data, compared to assemblages that could 
have been observed at this site at T1 and T2 under conditions corre‐
sponding to H0. An exceptionally different site is a site with an index 
of dissimilarity between T1 and T2 that has an extreme value in the 
upper tail of the distribution of TBI index values. This value may also 
have been produced by a different (e.g., ecological) process than 
the one having generated most other values in the distribution. To 
determine how extreme a value has to be in the reference distribu‐
tion before it is considered extreme, we will rely on the usual signif‐
icance levels (e.g., 5%, 1%, etc.) of statistical analysis. (b) In the data 
representation part of the method, we will use the species losses 
and gains between T1 and T2 (for presence–absence or abundance 
data) to uncover the main ecological changes that have taken place 
between T1 and T2 in the study area or in subsets (geographic or 
environmental) of that area.

The paper is organized into sections as follows: Methods (Section 
2), Numerical simulations (Section 3), TBI analysis of environmental 
or trait data (Section 4), Ecological applications (Section 5) where the 
method is illustrated by three case studies, and Concluding remarks 
and prospective applications (Section 6).

2  | METHODS

The proposed method consists basically in the following analyses 
of temporal variation, detailed in the following subsections. (2.1) 
Computation and testing: (2.1.1) a temporal beta‐diversity Index 

(TBIi = Di) is computed for each site i between the data vectors cor‐
responding to T1 and T2 (Figure 1), using an appropriate dissimilarity 
index (D). Then (2.1.2), when it is pertinent to the problem at hand, 
the indices can be tested for significance using a permutational pro‐
cedure. (2.2) Partitioning dissimilarities into losses and gains: four of 
the D indices that can be used in this type of analysis (two indices 
for abundance and the corresponding two indices for presence–ab‐
sence data) also allow the computation of species losses and gains 
at each site between T1 and T2. These statistical elements provide 
users with detailed information, at the site level, about the response 
of the community to the event or change that occurred between T1 
and T2. (2.3) The loss and gain statistics can be used together to 
draw B–C plots, which illustrate whether the temporal changes at the 
various sites are dominated by gains or by losses. (2.4) The Software 
subsection lists the R software available to carry out the analyses.

2.1 | Temporal beta‐diversity Indices: 
computation and testing

Since Whittaker (1972), ecological dissimilarities have been used 
to measure beta diversity among sampling units. Koleff, Gaston, 
and Lennon (2003) reviewed 24 beta‐diversity indices proposed in 
the literature while Legendre and De Cáceres (2013) described 14 
properties of 11 dissimilarity indices that are appropriate for beta‐
diversity studies. The Ružička dissimilarity (1958) was identified by 
Podani, Ricotta, and Schmera (2013) and by Legendre (2014) as an‐
other appropriate index for beta‐diversity studies.

Some of these indices are used as TBI indices in this paper: the 
percentage difference (Odum, 1950; sometimes abbreviated to %diff 

TA B L E  1   The dissimilarities (top panel) and p‐values (lower panel) associated with the tests of significance of the distances between T1 
(survey #4) and T2 (survey #11), for 12 mesocosms (M1 to M12) shown in order of increased insecticide doses

Mesocosms 
Treatment, μg/L

M1 
0

M2 
0

M3 
0

M4 
0

M5 
0.1

M6 
0.1

M7 
0.9

M8 
0.9

M9 
6

M10 
6

M11 
44

M12 
44

TBI dissimilarity values

%difference D 0.433 0.449 0.405 0.459 0.496 0.439 0.488 0.485 0.474 0.621 0.735 0.672

Ružička D 0.604 0.620 0.576 0.630 0.663 0.610 0.656 0.653 0.643 0.766 0.847 0.804

Chord D 0.806 0.836 0.688 0.774 0.872 0.777 0.884 0.895 0.807 0.981 1.144 1.075

Hellinger D 0.859 0.863 0.807 0.860 0.922 0.848 0.930 0.895 0.887 1.072 1.194 1.101

Log.chord D 0.862 0.865 0.814 0.865 0.929 0.854 0.933 0.899 0.899 1.078 1.200 1.106

Euclidean D 26.33 26.55 22.63 22.44 27.24 24.36 26.43 27.12 23.27 24.82 29.79 27.72

p‐Values corrected for multiple testing

%difference D 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.192 0.001* 0.020*

Ružička D 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.182 0.001* 0.019*

Chord D 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.675 0.001* 0.023*

Hellinger D 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.119 0.001* 0.032*

Log.chord D 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.119 0.001* 0.038*

Euclidean D 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.290 1.000

Note. The p‐values (9,999 random permutations) were corrected for multiple testing (Holm correction). The significant p‐values at the 0.05 level 
(marked with an asterisk) and the corresponding TBI indices are in bold. The maximum possible value is 1 for the %difference and Ružička dissimilarities, 
and 

√

2 = 1.4142 for the chord, Hellinger, and log.chord distances. The Euclidean distance does not have an upper bound.
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in the present section of the paper; this index is also known as the 
Bray‐Curtis dissimilarity; see Legendre & De Cáceres, 2013, Table 1, 
about the application of the anteriority rule for the name of this 
index) and Ružička (1958) indices, as well as corresponding forms for 
presence–absence data, known as the Sørensen and Jaccard indices. 
Indices in this group of four contain in their equations the quantities 
B and C, which represent the species loss and gain components of 
these dissimilarities. The chord, Hellinger, and log‐chord distances, 
which are widely used by community ecologists, are also applicable 
as TBI indices, although they cannot be decomposed into losses and 
gains. All these indices can be subjected to the test procedure de‐
scribed in Section 2.1.2.

Tests of significance for dissimilarity coefficients (D) are usually 
not possible because the D values in a dissimilarity matrix are ob‐
tained from the computation of an index between all pairs of ob‐
jects, for example, sites in ecology (their number is n), and are thus 
interrelated, each site contributing to (n–1) of the dissimilarities in 
the half‐matrix of dissimilarities. In the T1–T2 comparisons for indi‐
vidual sites, however, the dissimilarity between T1 and T2 for a site 
is computed for the data from that site only, and these differ from 
the data involved in the T1–T2 comparisons of other sites. Hence, it 
would be possible to compute a valid test of significance in that case 
(Section 2.1.2).

2.1.1 | Computation of temporal beta‐
diversity Indices

Consider two data matrices, Mat.1 and Mat.2, about the same ob‐
jects observed at times T1 and T2; each matrix has n sites (with in‐
dices i) in rows and the same p variables (e.g., species, with indices j) 
in columns (Figure 1). Individual values may be noted yij.1 for T1 and 
yij.2 for T2. Compute the dissimilarity D(yi.1, yi.2) between the row 
vectors of values, yi.1 and yi.2, for each site i. These dissimilarities 
form a vector of length n, which is the number of sites.

The percentage difference dissimilarity (D%diff; method “%differ‐
ence” in the R function TBI.R, also known as the Bray‐Curtis index 
in other computer packages), and the Ružička dissimilarity (DRuz; 
method “ruzicka” in the R function; see Software in Section 2.4 
below) can be used for beta‐diversity assessment. They are obtained 
by computing a dissimilarity function (equations shown below). With 
presence–absence data, the percentage difference produces the 
(1 – SSørensen) dissimilarity whereas the Ružička dissimilarity pro‐
duces (1 – SJaccard), where S designates a similarity index.

The chord, Hellinger, and log‐chord distances are members of the 
Box–Cox family of distances (Legendre & Borcard, 2018). They are 
classical indices for beta‐diversity studies (Legendre & De Cáceres, 
2013). Their calculation involves two steps: first the calculation of a 
transformation of each data row (i.e., the chord transformation, the 
Hellinger transformation, or the transformation log(y + 1) followed 
by the chord transformation; Legendre & Borcard, 2018), followed 
by calculation of the Euclidean distance. These indices, as well as the 
Euclidean distance itself, are also implemented in the TBI.R function 
and will be used in the simulations and in Ecological application 1 

below, although they are less interesting for the comparison of com‐
munity composition matrices than the percentage difference and 
Ružička indices, which provide additional information about losses 
and gains of species. The indices in the Box–Cox family are avail‐
able in the computer function for TBI analysis to ensure compatibil‐
ity with other multivariate analyses that users may want to do using 
these popular indices.

When the percentage difference or the Ružička dissimilarity is 
used as TBI indices, one can compute two derived indices to study 
the directionality of the change through time at each site, as pro‐
posed by Legendre and Salvat (2015). Consider data vectors y1 and 
y2 corresponding to the multi‐species observations at T1 and T2 for 
a focal site of interest. The following calculations can be done on 
these vectors:

•	 Aj is the part of the abundance of species j that is common to the 
two survey vectors: Aj = min(y1j, y2j). A is the sum of the Aj values 
for all species. It represents the unscaled similarity between two 
surveys.

•	 Bj is the part of the abundance of species j that is higher in survey 
1 than in survey 2: Bj = (y1j – y2j) if y1j > y2j; Bj = 0 otherwise. B is 
the sum of the Bj values for all species. It is the unscaled sum of 
species losses between T1 and T2.

•	 Cj is the part of the abundance of species j that is higher in survey 
2 than in survey 1: Cj = (y2j – y1j) if y2j > y1j; Cj = 0 otherwise. C is 
the sum of the Cj values for all species. It is the unscaled sum of 
species gains between T1 and T2.

The values A, B, and C are the building elements of the percentage 
difference, D%diff = (B + C)/(2A + B + C), and the Ružička dissimilarity, 
DRuz = (B + C)/(A + B + C) (Podani et al., 2013; Legendre, 2014, Table 
S1.2). These two indices are interchangeable for TBI comparison al‐
though their values are not monotonically related. (B + C) represent 
the unscaled dissimilarity. The sign of (C – B) indicates the direction‐
ality of the process of losses and gains of individuals of the different 
species between the two surveys. B and C can be scaled by division 
by a denominator “den”, which is den%diff = (2A + B + C) for D%diff index 
and denRuz = (A + B + C) for the DRuz index. The D%diff and DRuz dissim‐
ilarities measure the temporal beta diversity, or temporal change in 
community composition, for a site. The scaled B and C statistics can 
be called Dloss and Dgain, where Dloss = B/den and Dgain = C/den. An in‐
teresting relationship is that Dloss + Dgain = D%diff or DRuz, depending on 
the denominator, den%diff or denRuz, that is used. In other words, Dloss 
and Dgain partition the D%diff or DRuz dissimilarities into loss and gain 
components. Values of these indices are in the [0,1] range and are thus 
directly comparable.

The loss and gain statistics can be computed for occurrence 
(i.e., presence–absence) data as well, because D%diff becomes the 
Sørensen dissimilarity with occurrence data and DRuz becomes the 
Jaccard dissimilarity, as mentioned above. The Sørensen and Jaccard 
dissimilarity equations for occurrence data are represented in book 
and paper equations with lower‐case instead of upper‐case letters 
(e.g., in Koleff et al., 2003, Legendre & Legendre, 2012, Legendre 
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& De Cáceres, 2013); their equations, which exactly correspond 
to those of D%diff and DRuz, are DSørensen = (b + c)/(2a + b + c) and 
DJaccard = (b + c)/(a + b + c).

What are the ecological applications of Dloss and Dgain? For each 
site, one can explore which process, between Dloss and Dgain, shows 
the largest contribution to the temporal D%diff or DRuz dissimilarity; 
in other words, which process is dominant at each site. The means of 
the Dloss and Dgain components across the sites express the dynamics 
of the community over all sites. For observations across a large num‐
ber of sites within a region, or (e.g.) in all quadrats of a stem‐mapped 
dynamics forest plot, the B/den and C/den statistics can be mapped, 
plotted as species losses and gains in the new B–C plots described 
in Section 2.3 (see example in Ecological application 3), or studied in 
other ways (e.g., in Ecological application 2).

2.1.2 | Testing procedure

When it is pertinent to the problem at hand, TBI indices can be 
tested for significance. An example is found in Ecological application 
1. The data are permuted at random in both matrices, as described 
below, and the index is recomputed. This procedure is repeated a 
large number of times, and a p‐value is calculated for the TBI differ‐
ence between T1 and T2 at each site i. A detailed description of the 
permutation method follows.

1.	 The null hypothesis (H0) of the TBI test is that a species 
assemblage at a focal site i (i.e., a site under study) is not 
exceptionally different between T1 and T2, compared to as‐
semblages that could have been observed at the same two 
times at this site. The test involves a comparison of the TBI 
index computed for site i with other TBI indices obtained by 
randomization of the observed data under conditions corre‐
sponding to H0. The null hypothesis focuses on values of the 
TBI statistic, which is the dissimilarity between data vectors 

observed at times T1 and T2 for site i. The statistical decision 
(one‐tailed test) is taken as in any other parametric or per‐
mutational test; see paragraph 7 below.

2.	 Under the general hypothesis that the site data are permutable, 
the values in each column of Mat.1 are permutable within that 
matrix, and similarly for Mat.2. The variation of each species 
among sites, in a given matrix, is assumed to be due to random 
sampling of a statistical population. Permutations are done for 
each species separately, following the concept that different spe‐
cies in an assemblage are under the influence of a variety of pro‐
cesses and do not form a pseudo‐organismic entity that would 
react as a unit to these varied processes. More about this in Note 
1 at the end of the present subsection. Technical aspects of this 
permutation method are described in paragraph 3 underneath. 
Permutation of the species occurrence or abundance values in 
each column, independently of one another, was also the method 
used to assess the significance of the Local Contributions to Beta 
Diversity (LCBD indices, describing the contributions of individual 
sites) in the Legendre and De Cáceres (2013) paper. The same 
logic is followed here to test the significance of TBI indices, which 
are also indices about individual sites.

3.	 The data are permuted columnwise, species by species, and in ex‐
actly the same way in matrices T1 and T2 (Figure 2). To accomplish 
that in a computer function, a given permutation of the two matri‐
ces is started with the same random seed in both, and that seed is 
changed at the beginning of each new permutation. With this 
method, the abundance values of a given species at site i (e.g., site 
1) in matrices T1 and T2 of the original data will be shifted to an‐
other site position (e.g., site 9) in both matrices in the permuted 
data. What is permuted is then a series of differences between T1 
and T2, for each species separately.

4.	 In the TBI test, we are looking for site vectors whose dissimilari‐
ties between T1 and T2 would be exceptionally large. We are not 
interested in a systematic difference that would affect all sites 

F I G U R E  2   Random permutation of the community composition data is done separately for each species (column), in matrices T1 (left) 
and T2 (right). This figure shows an example where a permutation of species j brings value y1j to position y9j and value y5j to position y1j. The 
exact same permutation, involving all values in column j, is done in matrices T1 (left) and T2 (right). Following similar permutations of all p 
species, dissimilarities are computed between the two vectors representing each site i, producing the values Di under permutation
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concerning the loss or gain of a subset of the species, or of all spe‐
cies. Differences of this type are preserved, through the permuta‐
tions, by not permuting data between Mat.1 and Mat.2. Simulations 
reported in Supporting Information Appendix S1 showed that the 
test performed adequately in this respect; see Figures S1.2 and 
S1.4 and the associated tables of simulation results in that 
appendix.

5.	 If the selected TBI index is the chord, Hellinger, or log‐chord dis‐
similarity, a transformation is applied to the data before calcula‐
tion of the Euclidean distance, as described in Section 2.1.1 of the 
Methods. For correct calculation of these indices under permuta‐
tion, the transformation is recomputed on the permuted untrans‐
formed data matrices. This is necessary to make sure that the 
permuted data are transformed in the same way as the initial data, 
with row sums (for Hellinger) or row norms (for chord) being 1. In 
this way, the Di values of the permuted data remain comparable to 
the reference Di.

6.	 After permutation, the TBI distances between Mat.1 and Mat.2 
are recomputed for all sites i separately.

7.	 After a large number of permutations, a p‐value is computed for 
each site i, as in any other permutation test. The test is one‐tailed 
in the upper tail since we are looking for sites with large TBI sta‐
tistic values. Thus, a site that changed very little while the other 
sites changed a lot will not be found exceptionally different by this 
test, which was designed to identify sites where the change is 
greater than at most pseudo‐sites that can be produced by rand‐
omizing the data. If the one‐tailed p‐value is smaller than or equal 
to the significance level, for example, 0.05, H0 is rejected. 
Rejection may be due to two different situations that are both of 
interest to ecologists: (a) a TBI value in the upper tail of the statis‐
tical distribution may correspond to a site subjected to the same 
process as the other sites in the study, that site having produced a 
high TBI value by chance. Although this technically corresponds 
to a type I error, these extreme sites in the statistical distribution 
may still be interesting to examine. (b) Else, rejection may indicate 
a site where some special event has taken place between T1 and 
T2, different from what happened at other sites, causing a large 
difference to appear in community composition. Examples are cli‐
matic and geologic events, or the result of anthropogenic actions 
or processes. In both cases, the significant sites are of interest to 
ecologists who can concentrate work on them and investigate 
why community composition has changed in an exceptional way 
at these locations. Because the TBI indices for n sites are all tested 
at the same time, a correction for multiple testing must be applied 
to obtain a correct experiment‐wise error rate.

Note 1: Ecological interpretation of the permutation models—The 
permutation procedure described in paragraphs 2 and 3 above, 
whereby the values are permuted separately for each species, fol‐
lows a concept of species assemblages that considers the species in 
an assemblage to be under the influence of a variety of processes; 
they do not form a pseudo‐organismic entity that would react as a 
unit to these processes. The first formulation of this concept is due 

to Gleason (1926) who argued that species responded individually 
to environmental conditions. He was opposing Clement's (1916) 
dominant view of the time that species assemblages formed an 
entity that reacted as a kind of pseudo‐organism. A permutation 
method based on Clement's pseudo‐organismic theory would per‐
mute at random entire rows of data in matrices Mat.1 and Mat.2, 
not the values observed for each species separately. Most ecol‐
ogists nowadays reject the pseudo‐organismic view of Clement 
and favor an alternative view, which is an extension of Gleason's, 
involving different ecological processes. The most important are 
environmental filtering (as in Gleason's theory), neutral processes 
which include ecological drift and limited dispersal (Hubbell, 
2001), and interactions among species, all of which generate spa‐
tial structures in community data (Legendre, 1993; Legendre & 
Legendre, 2012). Permutation of values in individual species vec‐
tors, used in this paper and in the TBI.R function, follows this view 
about ecological communities.

Note 2—A different permutation method is used in tests of sig‐
nificance in linear statistical modeling (regression, RDA, CCA). In ca‐
nonical analysis, this method consists in permuting entire rows of 
data in either the response or the explanatory matrix. This method 
implements Clement's view described in the previous paragraph. 
That permutation method was used in additional simulations. 
Results of these simulations are not reported in detail in Supporting 
Information Appendix S1 but they are summarized in the second 
paragraph of section “b. Permutation methods” in that Appendix.

Note 3—It is also possible to identify the species that have 
changed in a significant way between T1 and T2, either in the whole 
study area or in separate habitat types. This involves a different type 
of statistical test. The hypothesis (H0) that a species has not changed 
in abundances throughout the sites under study can be tested using 
a paired t test. Because species abundances are not normally dis‐
tributed, a permutation test must be used. The permutations involve 
the two facing values of the species observed at each site at T1 and 
T2. A correction for multiple testing must be applied to the p‐val‐
ues because several species are tested simultaneously. This method 
was used in the Legendre and Condit (2019) companion paper. An 
R function implementing that test is available; see Section 2.4, first 
paragraph.

2.2 | Partitioning dissimilarities into losses and gains

When the percentage difference or the Ružička dissimilarity are 
used as TBI indices, B is the unscaled sum of species losses and C is 
the unscaled sum of species gains between T1 and T2. These sta‐
tistics are described in Section 2.1.1 above. The unscaled statistics 
can be scaled to the [0,1] range by division by the percentage differ‐
ence denominator den = (2A + B + C) or by the Ružička denomina‐
tor den = (A + B + C). The dissimilarity D is (B/den + C/den) = (B + C)/
den. If the TBI dissimilarity is either the percentage difference or the 
Ružička dissimilarity, one can take advantage of this decomposition 
of D and list the B/den and C/den components of TBI indices for 
each site in the study. Examples are shown in Appendices S3 and 
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S4, which complement Ecological applications 1 and 3. These basic 
statistics can be used in two different ways:

1.	 We can compute summary statistics: the mean of (B/den), the 
mean of (C/den), and the mean of D = (B + C)/den. The following 
relationship holds: mean(B/den) + mean(C/den) = mean(D). From 
this decomposition of D, we can derive the contribution of 
the species losses to the total dissimilarity, B/(B + C), and sim‐
ilarly the contribution of the species gains to the total dissim‐
ilarity, C/(B + C). These two ratios sum to 1, providing the 
relative importance of the species losses and gains phenomena. 
The result is the same for calculation without a denominator 
den, or with either the percentage difference or the Ružička 
denominator.

2.	 For each site, we can also obtain the sign of the difference (gains–
losses) or (C–B): if C > B, we note a plus (+) sign, and if C < B we 
note a minus sign (–) in the function output list. This notation al‐
lows users to quickly identify the sites where gains or losses domi‐
nate. Similarly, the difference mean(C/den)–mean(B/den) is 
computed; its sign tells us if gains (+ sign) or losses (– sign) domi‐
nate across all sites. The significance of the difference between 
the two vectors of statistics B/den and C/den can be computed 
using a parametric or permutational paired t test; the TBI function 
mentioned in Software (Section 2.4) computes both forms. These 
tests provide overall indications of the direction of change in com‐
munity composition over all sites. They help confirm the asym‐
metry between abundance or occurrence losses (B/den) and 
abundance or occurrence gains (C/den). In Ecological application 2 
(Tikus Island coral communities), the two forms of calculation, on 
abundance and occurrence data, provided complementary 
information.

2.3 | Species losses and gains: the B–C plot

We can also use the B/den and C/den statistics as coordinates of 
points (representing sites) in bivariate graphs with B/den in the ab‐
scissa and C/den in the ordinate. We call these graphs B–C plots. 
They display visually the relative importance of the loss and gain 
processes across the study sites, informing researchers about the 
detailed and global structure of the species losses and gains.

A B–C plot is presented in Ecological application 3 (Chesapeake 
Bay benthos data). In that B–C plot, a diagonal green line, with 
slope of 1, was drawn through the origin; it represents the the‐
oretical positions of sites where Dgain would be equal to Dloss. A 
red line was also drawn parallel to the green line, passing through 
the centroid of all points. When the red line is below the green 
line, it indicates that the survey interval was dominated by species 
losses across the sites, and the opposite if the red line is above the 
green line. Points found higher in the plot, in the diagonal direction 
toward the upper‐right corner, represent higher temporal beta di‐
versity than points found lower in the direction of the lower‐left 
corner.

In B–C plots, the points representing sites can be labeled with 
colors or symbols representing the types of environment, the geo‐
graphic areas where they come from, or any other independent clas‐
sifier of interest. Separate B–C plots can be drawn for sites surveyed 
in different types of environment, although all sites may have been 
analyzed in the same TBI analysis. Comparison of these separate 
plots will immediately show which types of environment have pro‐
duced mostly losses or gains in species occurrences or abundances.

2.4 | Software

These calculations are implemented in the TBI.R function available 
in the R package adespatial (Dray et al., 2019). Function plot.TBI.R 
is also available in adespatial to draw B–C plots. Examples of out‐
put files of the TBI function are shown in Appendices S3 and S4, 
which complement Ecological applications 1 and 3. Function tpaired.
krandtest.R can be used to identify the species whose abundances 
have changed in a significant way between T1 and T2. That function 
is described in Supporting Information Appendix S5; it is also avail‐
able in the R package adespatial on CRAN.

Another R package, codyn (Hallett et al., 2018, 2016), computes 
a variety of metrics for temporal diversity analysis. The percentage 
difference D is used as one of the metrics for temporal comparison 
of communities observed at different times at a focal site. Function 
turnover of that package includes an option to compute species 
losses and gains divided by the %difference denominator, as in the 
TBI.R function; losses and gains are the indices called B and C in the 
present paper.

3  | NUMERIC AL SIMUL ATIONS

Numerical simulations were used to check the type I error rate and 
power of the permutation method described in Section 2.1.2 above. 
The data simulation methods and results are described in detail in 
Supporting Information Appendix S1. A summary of these results is 
presented here, with recommendations to users.

3.1 | Simulation to estimate type I error rates

The simulation results reported in Supporting Information Appendix 
S1 show that the TBI tests had correct rates of type I error for the 
two community‐like data generation methods (Poisson and log‐
normal) and all dissimilarity indices available in the TBI.R function, 
and this for all significance levels (α) considered, from α = 0.01 to 
α = 0.50. The testing method is thus valid in all these circumstances 
(Edgington, 1995).

3.2 | Simulations to compare power of D indices

For the analysis of community composition data, the percentage dif‐
ference and Ružička indices produced tests with the highest power, 
followed by the indices in the Box–Cox family: the chord, Hellinger, 
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and log‐chord distances. The Euclidean distance alone produced TBI 
tests with extremely low power with community composition‐like 
data. This distance should not be used for TBI tests of community 
composition data (Figures S1.5 and S1.6, Supporting Information 
Appendix S1). However, power was high enough to recommend the 
Euclidean distance for test involving standardized environmental 
data.

In summary, the best combination to obtain TBI tests of commu‐
nity data with maximum power is to use the percentage difference 
or the Ružička indices. These two dissimilarities can also be decom‐
posed into species losses (B/den) and gains (C/den), which can be 
used to examine the processes of losses and gains at the site level 
and produce B–C plots.

Additional simulations involving different numbers of sites with 
an effect and different total numbers of sites showed that power of 
the test was high as long as the proportion of sites with an effect 
to be detected (i.e., sites made to be exceptional) was smaller than 
n/2, where n is the total number of sites in the study (Figure S1.7, 
Supporting Information Appendix S1).

4  | TBI ANALYSIS OF ENVIRONMENTAL 
OR TR AIT DATA

It could be interesting to identify the sites where the changes in en‐
vironmental conditions (e.g., land use) were the most important. The 
TBI method can be used to compare two matrices containing the 
same environmental variables observed at T1 and T2 and determine, 
for example, if these sites are also those where the community has 
changed the most. The analysis of environmental variables is a situ‐
ation where the Euclidean distance would be appropriate as a basis 
for computing a TBI index.

•	 If all environmental variables are quantitative, they should be 
standardized using the same parameters (means, standard devi‐
ations) for matrices T1 and T2, before they are used as input in 
TBI analysis. How to do that is described and implemented in a 
function provided in Supporting Information Appendix S2.

•	 If the data are factors or a mix of quantitative and factor variables, 
one should join matrices T1 and T2 one on top of the other, as 
described in the explanation paragraph of Supporting Information 
Appendix S2, and then compute a Gower dissimilarity matrix D. 
Apply principal coordinate analysis (PCoA) to the square‐rooted 
Gower dissimilarities because a Gower D matrix is non‐Euclidean. 
Square rooting should make the Gower matrix Euclidean, which 
is necessary before PCoA in this case; we have to recuperate and 
use all PCoA axes for TBI analysis; hence, the values should be 
real and not complex numbers. Then, separate the two trans‐
formed matrices and use them as input into TBI analysis.

•	 For community trait matrices with mixed precision levels (quan‐
titative and qualitative traits), use the same method as in the 
previous paragraph: compute a Gower dissimilarity matrix, as 
recommended by Laliberté and Legendre (2010), then PCoA of 

the square‐rooted dissimilarities; split the principal coordinates 
into two matrices and compute TBI analysis using the Euclidean 
distance. No application of TBI analysis to environmental or trait 
data is presented in this paper to save space.

5  | ECOLOGIC AL APPLIC ATIONS

The three ecological applications that follow use multivariate com‐
munity data. They were chosen to illustrate different facets of TBI 
analysis, not to draw ecological conclusions about these three par‐
ticular ecosystems. Application 1 illustrates the importance of car‐
rying out TBI analysis using a dissimilarity index designed for the 
analysis of community composition data; the Euclidean distance 
produced nonsignificant and uninterpretable results. In application 
2, The B and C components of the TBI dissimilarity are used to ana‐
lyse the effects of a major disturbance (El Niño) on communities; 
the analysis is complemented with a standard canonical analysis of 
the community data. Application 3 illustrates the construction and 
interpretation of a B–C plot.

5.1 | Ecological application 1—Insecticide 
treatments in mesocosms

Observations on the abundances of 178 invertebrate species (mac‐
roinvertebrates and zooplankton) subjected to insecticide treat‐
ments in aquatic mesocosms (called “ditches”) were used by van den 
Brink and ter Braak (1999) as an application example in their paper 
describing Principal Response Curves (PRC) analysis. The authors 
agreed to make the data available to researchers in the CANOCO 
program documentation and in the R package vegan (Oksanen et al., 
2017).

The experiment involved twelve mesocosms, which were sur‐
veyed on eleven occasions. Four mesocosms served as controls 
(dose = 0) and the remaining eight were treated once with the insec‐
ticide chlorpyrifos, with dose levels of 0.1, 0.9, 6.0, and 44.0 μg/L in 
two mesocosms each. The data are log‐transformed species abun‐
dances, ytr = loge(10y + 1). In their paper, the authors used the log‐
transformed invertebrate data in PRC analysis; PRC preserved the 
Euclidean distance among the observations.

The 12 mesocosms had been attributed at random to the treat‐
ments. However, to facilitate presentation of the results, they will be 
presented here in order of increased insecticide doses: {0, 0, 0, 0, 0.1, 
0.1, 0.9, 0.9, 6.0, 6.0, 44.0, 44.0} μg/L.

Results of the calculations with the R function TBI() are presented 
for the species abundance and occurrence data of this ecological 
application. We will compare data of surveys #4 and #11. Survey 
#4 was done one week after the insecticide treatment in the meso‐
cosms, and the fauna was considered to have fully recovered from 
treatment at the time of survey #11. To give examples, in the two 
mesocosms that had received the highest insecticide doses, species 
richness increased by 9 and 19 species from survey #4 to #11.
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The TBI dissimilarities showed that in the two mesocosms with 
the highest insecticide doses, community compositions were the 
most different between T1 and T2 (Table 1, upper panel). The test 
found the changes in these two communities to be exceptional with 
reference to the T1–T2 difference found in communities simulated 
by permutations of the data obtained during in the experiment. The 
two mesocosms that had received the highest doses of the insecti‐
cide, M11 and M12, showed exceptional differences in community 
composition for the percentage difference and Ružička dissimilarities 
(Table 1, lower panel). The chord, Hellinger, and log‐chord distances 
led to the same conclusion. These five distances had been deemed 
appropriate for beta‐diversity study (Legendre & De Cáceres, 2013). 
On the contrary, the Euclidean distance is known to be inappropri‐
ate for such studies (Legendre & Legendre, 2012; Orlóci, 1978) and, 
indeed, TBI tests based on that distance did not produce significant 
differences in community composition between surveys #4 and #11 
in any of the mesocosms, including M11 and M12.

Detailed analysis of the species losses (B/den) and gains 
(C/den), obtained from TBI analysis computed with the percentage 
difference (Supporting Information Appendix S3, first section), 
showed that in the eight treated mesocosms (called Sites 5 to 12 in 
Supporting Information Appendix S3), the changes in community 
composition (abundance data) always consisted of species gains; 
that is, statistic C/den (gains) was always larger than B/den (losses). 

The mean values of B/den and C/den for these eight mesocosms 
showed that gains (C/den) represented 56% of the dissimilarities, 
as expected in a study of recovery after an insecticide treatment. 
The permutational paired t test showed a highly significant dif‐
ference (p = 0.0066) between losses and gains across the eight 
treated mesocosms.

TBI calculations using the Sørensen D (Supporting Information 
Appendix S3, Section 2) indicated that, in addition to mesocosms 
#11 and 12, mesocosm #10, treated with 6 μg/L of insecticide, also 
displayed a significant difference between T1 and T2 at significance 
level 0.05. This result indicates that in the insecticide experiment, 
the reappearance of species (positive change) gave a clearer signal 
of community recovery than the increase in species abundances 
(Supporting Information Appendix S3, Section 1).

5.2 | Ecological application 2—South Tikus Island 
coral communities

Brown and Suharsono (1990) surveyed coral communities (75 spe‐
cies) at 10 sites in the island of South Tikus, Indonesia, in the years 
1981, 1983, 1984, 1985, 1987, and 1988. An El Niño event occurred 
in 1982–1983, which caused coral bleaching and death of coral colo‐
nies, and triggered changes in the composition of coral communities. 
They reported that “as many as 80–90% of corals died on the reef 

F I G U R E  3   Tikus Island coral data. (a) Changes in dissimilarity D computed from the quantitative coral community compositions between 
years, and its components B/den (losses) and C/den (gains); den is the denominator of the dissimilarity index D, (2A + B + C) in this figure. 
The 1981 survey, before the El Niño event, is compared in turn to the 1983, 1984, 1985, 1987, and 1988 surveys. (b) Same for the species 
occurrence (i.e., presence–absence) data
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flats at the study sites, with the major casualties being branching 
species in the genera Acropora and Pocillopora.”

Coral forms colonies which occupy surfaces, so that the data are 
not in numbers of individuals but in areal cover of each species. The 
sum of the species areal covers at a site may exceed 100% because 
coral colonies may overlap one another vertically. The Brown and 
Suharsono (1990) data have been used in several papers to demon‐
strate the application of multivariate methods for the analysis of 
beta diversity and the comparison of surveys across time, for ex‐
ample, by Warwick, Clarke, and Suharsono, (1990), Anderson et al. 
(2011), and Chao and Chiu (2016). Following these papers, the data 
in the present application were treated as if they were species abun‐
dances. They were obtained from Appendix S1 of the Anderson et 
al. (2011) article.

The data were analyzed in two complementary ways. (a) Figure 3 
presents an analysis of the species loss (B/den) and gain (C/den) com‐
ponents of the dissimilarity D between the 1981 survey, before the 
El Niño event, and the five following surveys: 1983, 1984, 1985, 
1987, and 1988, for abundance and presence–absence data. (b) This 
analysis is completed with a redundancy analysis (RDA) biplot shown 
in Figure 4, showing the changes in community composition with 
time. This biplot was produced as follows: first, a percentage dif‐
ference matrix was computed among all years and sites; the dissim‐
ilarities were square‐rooted to make the matrix Euclidean, and that 
matrix was subjected to principal coordinate analysis (Gower, 1966). 
The entire matrix of principal coordinates was used as the response 
data in a RDA against a factor representing the six survey years of 
the study. This form of canonical ordination is called distance‐based 
redundancy analysis (dbRDA, Legendre & Anderson, 1999).

We will examine the changes in community composition be‐
tween the 1981 survey, before the El Niño event, and the following 
five surveys: 1983, 1984, 1985, 1987, and 1988. This study is not 
meant to identify sites that were exceptionally different between 
two years or test specific hypotheses about them. Instead of test‐
ing the TBI statistics for sites, we will carry out a detailed study of 
the species loss (B/den) and gain (C/den) statistics described in the 
Methods. These statistics were computed with the denominator 
(den) of the percentage difference index, D%diff; they decompose the 
percentage difference D into additive components, losses (B/den) 
and gains (C/den).

First, we will plot the mean values of the B/den, C/den, and D 
statistics computed across the sites, in comparisons with the 1981 
survey (before the El Niño event) with all successive surveys in turn 
(1983, 1984, 1985, 1987, and 1988, after El Niño) (Figure 3), in order 
to study the effect of the El Niño event on the communities. This 
method of analysis had been used by Legendre and Salvat (2015, 
Figure 3), who described the effects of a nuclear test on the mollusk 
communities of an atoll in the Pacific.

Figure 3a shows the changes in D between years, and its com‐
ponents B/den and C/den. We observe that after El Niño, species 
losses (B/den) dominated the changes, accounting for 96% of the 
mean dissimilarity (D) between 1981 and 1983; species gains (C/den) 
represented only 4% of mean D. In later years, the species losses 
decreased whereas gains increased till the 1981–1985 comparison. 
The TBI function was run over all year pairs over the 10 study sites. 
Results showed that dominance of B/den (losses) over C/den (gains) 
was significant for all year pairs, as shown by the overall paired t 
tests of the asymmetry, described in the Section 2.

Does that mean that some of the species that had disappeared 
had recovered, or that only the species that remained had increased 
their abundances‐per‐species? The answer is found in Figure 3b, 
which displays the same statistics computed for species occurrence 
data. In that graph, the B/den and C/den lines would be horizontal 
at value 0 if all species had remained present and the change after 
El Niño was only in the abundances. Instead, that graph shows that 
many species disappeared at first from the surveyed sites after El 
Niño (B/den was 0.77 for the 1981–1983 comparison). Then some 
of the original species recovered on the reefs (B/den decreased to 
0.62 for 1981–1984 and to 0.51 for 1981–1985), possibly by budding 
from colonies that had survived at nearby sites or by dispersion of 
larvae from elsewhere. Species losses stabilized around 0.60 in later 
years compared to the 1981 community composition. During that 
time, new species that were not present in 1981 occupied the de‐
pleted reefs, starting in the 1981–1983 comparison (C/den = 0.06) 
and increasing in the following years (0.17 for 1981–1984 and 0.19 
for 1981–1985). Gains of new species, compared to 1981, stabilized 
around 0.10–0.15 in later years.

Whereas the dissimilarity values D remained large for species 
abundance and occurrence data, the changes in D became small in the 
later‐year comparisons and were possibly caused by sampling varia‐
tion. The large values of D between 1981 and the post‐El Niño years 
showed that the coral communities had settled to a new composition 

F I G U R E  4   Tikus Island coral data. Canonical ordination 
plot obtained by dbRDA for the quantitative coral community 
compositions data for the 6 years and 10 sites, constrained by a 
factor representing the 6 survey years. The years are marked by red 
symbols, and the sites (open circles) for each year are incompletely 
surrounded by 60% coverage ellipses. Arrows materialize the 
sequence of years
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that was very different from what it was in 1981: from 1981–1984 
to 1981–1988, D remained around 0.75 for the abundance data 
(Figure 3a) and 0.74 for the presence–absence data (Figure 3b).

The overall similarity in community composition between years 
can be appreciated in a RDA biplot, where the centroid of each year is 
shown surrounded by the 10 site observations of that year (Figure 4). 
Computation of the biplot is described in the third paragraph of the 
present section. The figure shows that the sites in 1981 had quite 
different species composition than in surveys after El Niño. In 1983, 
the communities moved to a position in the ordination very distant 
from 1981 after heavy species losses; then it moved to a new po‐
sition in 1984 after it recuperated some of its former species, plus 
some new species that were not present in 1981 and 1983. It moved 
again in 1985. From then on, the changes observed in 1987 and 1988 
seem to represent random variation due to observed random losses 
and gains of species, which may be due in part to sampling variation 
and in part to random species losses and gains.

The communities found in South Tikus Island after the natural El 
Niño event strongly differed in species composition from the struc‐
ture they had in 1981, and they kept changing, apparently randomly, 
in later years. A similar phenomenon was shown in the Legendre and 
Salvat (2015) study, where the disturbance of marine mollusk com‐
munities was due to a strong man‐made disturbance. In both cases, 
the observed changes are compatible with the neutral theory of gen‐
eration of biodiversity and changes in communities (Hubbell, 2001).

5.3 | Ecological application 3—Chesapeake Bay data

The data set used in this example was extracted from the Maryland 
Data Sets of the Chesapeake Bay Benthic Monitoring Program 
(http://www.baybenthos.versar.com/data.htm), which is a portion 
of the Chesapeake Bay Program (http://www.chesapeakebay.net/). 
Detailed information about the sampling protocol is found on that 
web page. The data, available online, come in the form of numer‐
ous text files, one per group of variables and per year. Legendre 
and Gauthier (2014) compiled and formatted the separate data files 
in a Rdata file for immediate analysis in R. The <ChesapeakeBay.
Maryland.RData> data are available in a zipped file found in 
Appendix S5 of their paper. The file contains macrofaunal data (203 
invertebrates and 2 chordates) collected in the sediment of 27 sites 
of the bay, spring, and fall, during 13 years, that is, from 1996 to 
2008, for a total of 702 data rows.

Table 2 shows how the species are split between seasons and sa‐
linity groups. The spring survey data contain 181 species and the fall 
data 142 species. Two freshwater sites (#36 and #79) were present 
in the database; they contained 105 species. These two sites were 
excluded from the present example, which focuses on the 25 brack‐
ish sites where 155 species were identified. During the fall surveys 
in 2005 and 2008, 52 species (abundance data) were observed: 38 
in 2005 and 45 in 2008, with an intersection of 31 species found in 
both years.

This example offers the opportunity to build a B–C plot described 
in Section 2.3 of the Methods. The percentage difference index was 

used; the Ružička index would have produced similar results. These 
data will be used to demonstrate how to draw a B–C plot and how to 
interpret it. For the year pair 2005 and 2008, the B–C plot is shown 
in Figure 5. In the plot, the red line is above the green line. This indi‐
cates that gains in benthic abundances‐per‐species dominated losses 
in the Chesapeake brackish sites (fall surveys) from 2005 to 2008.

A simple classification of the sites by an environmental factor, 
water temperature during the 2005 fall survey, was used to separate 
the sites in two groups, providing an example of the kind of informa‐
tion that can be derived from displaying different habitat groups as 
symbols or colors in B–C plots. These two groups of sites could also 
be drawn in separate B–C plots. These separate plots would show 

TA B L E  2   Number of species in subsets of the Chesapeake Bay 
fauna data surveyed during 13 years, spring and fall. In total, 205 
benthic species were found at the 27 survey sites

Spring Fall Spring and fall

Freshwater (two 
sites)

93 58 105

Brackish (25 sites) 128 121 155

All survey sites (27 
sites)

181 142 205

F I G U R E  5   Chesapeake Bay benthos data. B–C plot comparing 
the fall surveys of 2005 and 2008, where the 25 brackish sites 
are plotted using the losses (B/den statistics) and gains (C/den 
statistics) computed from the species abundance data. Sites are 
identified by their code of the Chesapeake Bay Benthic Monitoring 
Program. The sites are represented by symbols corresponding 
to two water temperature groups observed during the 2005 fall 
survey. Green line with slope of 1: line where gains equal losses. 
The red line was drawn parallel to the green line (i.e., with slope = 1) 
and passing through the centroid of the points. Its position above 
the green line indicates that, on average, species gains dominated 
losses from 2005 to 2008
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that species losses dominated in the warmer sites, whereas species 
gains dominated in the colder sites. The B–C plot is an appropriate 
tool to display this ecological relationship.

In addition to the computation of the B/den and C/den com‐
ponents at each site, the R function also computed TBI indices 
(Supporting Information Appendix S4). A map of the 25 brack‐
ish sites on the Chesapeake Bay, plotted with the RgoogleMaps 
package, is shown in Figure 6. On the map, symbol sizes are pro‐
portional to the TBI indices and signs on the symbols indicate the 

sites dominated by abundance‐per‐species gains (+) and losses (–) 
between 2005 and 2008.

6  | CONCLUDING REMARKS AND 
PROSPEC TIVE APPLIC ATIONS

TBI analysis and B–C plots are useful to identify exceptional sites 
in space–time ecological surveys carried out to study the effects 

F I G U R E  6   Map of the 25 brackish sites (red symbols) of the Chesapeake Bay ecological survey produced with the RgoogleMaps package 
in R. Comparison of surveys in years 2005 and 2008, abundance data: point sizes are proportional to the TBI indices (percentage difference 
D). + signs indicate the 17 sites where gains in abundances‐per‐species dominated; – signs, the 8 sites where losses dominated. The site 
identification numbers are those found in the Chesapeake Bay data base
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of natural and anthropogenic changes to ecosystems. Such studies 
are presently carried out by teams of ecologists around the world. 
They are collecting data over land, in lakes and in the oceans to 
assess the effects of climate change on natural communities and 
other types of biodiversity data. Researchers would like to identify 
the sites where important changes have taken place. They can then 
focus their attention onto these sites and seek what has been going 
on there, and why community composition has changed in an ex‐
ceptional way at these sites. The TBI method was designed for this 
type of research.

The present paper is the first description of the ecological the‐
ory and statistical developments behind TBI analysis, describing the 
method in its present state of development. It should provide op‐
portunities to researchers to apply this new method of analysis to a 
broad palette of ecological and genetic questions.

The paper has shown that it is possible to compute a valid test of 
significance for dissimilarity indices, which are used to compare data 
about sites collected at different times. Additionally, the paper has 
shown how four of the TBI indices can be decomposed into loss and 
gain components (of species, or abundances‐per‐species) and how 
these components can be used to produce B–C plot, a new type of 
plot that informs users about the processes of biodiversity losses 
and gains through time found in space–time survey data.

The following indices were found to be appropriate for computa‐
tion and testing of TBI indices for community composition data: the 
percentage difference, Ružička, Sørensen, Jaccard, chord, Hellinger, 
and log‐chord indices. The first four present the advantage that 
they can be decomposed into species losses and gains at each site, 
which makes them the preferred choices in most studies. In stud‐
ies where community data must be projected into Euclidean space, 
for instance before PCA, RDA, or other forms of linear analysis, 
data can be transformed using the chord, Hellinger, and log‐chord 
transformations, and the TBI analysis can be performed using the 
corresponding D indices, that is, the chord, Hellinger, or log‐chord 
distances. The simulation study has also shown that the Euclidean 
distance is inappropriate for TBI analysis of community composition 
data. It can be used, however, for TBI analysis of environmental or 
species trait data.

The B (species losses) and C (gains) components are also the 
building blocks of the numerators of the replacement and nested‐
ness or richness/abundance difference indices of Andrés Baselga 
(Baselga, 2010, 2012) and János Podani (Podani et al., 2013; Podani 
& Schmera, 2011). These indices were reviewed by Legendre (2014). 
These authors have shown that the Jaccard/Sørensen and Ružička/
percentage difference D indices can be decomposed into replace‐
ment (or spatial turnover), 2 min(B,C) and richness/abundance dif‐
ference, |B–C|, for either presence–absence or abundance data. 
Because they developed their indices for spatial analysis, Baselga 
and Podani did not emphasize the asymmetry implicit in a tem‐
poral comparison between T1 and T2. In temporal studies, where 
processes are directional, comparison of the loss (B) and gain (C) 
components, which are central to the TBI method described in the 
present paper, is informative.

Analysis of the B and C components brings us to the heart of the 
mechanisms by which communities change through time: losses (b) 
and gains (c) of species, losses (B) and gains (C) of individuals of the 
various species. B–C analysis is especially interesting in species‐rich 
communities where researchers cannot examine the changes in each 
species individually.

B–C analysis can also be applied to subgroups of sites, for exam‐
ple, habitat types. In addition, it can be used to compare the changes 
that occurred in specific groups of species that are known to react 
differently to environmental stressors, for example, different age or 
size classes, or species of different origins, for example: the tem‐
perate, transitional, and boreal trees found together in the forested 
southern portion of Canada.

Different ecological applications were worked out with co‐au‐
thors during the development of the TBI method. Some of them 
have already been published. Working on these papers provided 
opportunities to develop the TBI theory and software, through the 
analysis of pertinent application questions, hypotheses, and data. 
These applications provide examples that ecologists may find use‐
ful as guides for the analysis of their own data, in addition to the 
ecological applications summarized in the previous section of the 
paper:

•	 Impact of a field experiment—The loss (B/den) and gain (C/den) 
statistics were first analyzed by Legendre and Salvat (2015) to 
compare community composition data (marine mollusks) during 
30 years, before and after a man‐made disturbance on an atoll in 
the Pacific. This disturbance to the mollusk community was the 
atmospheric test of a Hydrogen bomb in 1968.

•	 A paleoecological study—Winegardner et al. (2017) compared 
diatom communities in lake sediment surveyed 150 years apart 
across the USA. Temporal beta‐diversity varied significantly as a 
function of forest cover, with higher temporal beta in watersheds 
with contemporary lower forest cover.

•	 Space–time freshwater ecology—Kuczynski, Legendre, and 
Grenouillet (2018) compared freshwater fish surveys 20 years 
apart in rivers throughout France. They observed biotic homog‐
enization over time in fish communities. Changes in community 
composition mainly resulted from population declines and were 
favored by an increase in temperature seasonality and in non‐na‐
tive species density.

•	 Forest ecology—Legendre and Condit (2019) analyzed B–C plots 
for six habitat types, comparing tree community composition 
(abundance data) from the surveys conducted 30 years apart, in 
1985 and in 2015, in the Barro Colorado Island Forest Dynamics 
Plot in Panama (50 ha) divided into 1,250 (20 m × 20 m) quadrats.

In a particular study, researchers may be mostly interested in 
identifying the sites with high and significant TBI indices. In other 
studies, interest may be in a fine analysis of the changes in the loss 
and gain components of the dissimilarity in community composition, 
compared to a pre‐disturbance situation. One can look at these com‐
ponents in graphs that allow researchers to compare, for example, 
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different subsets of the data. Ecological examples have been shown 
in the paper for these different situations.

ACKNOWLEDG MENTS

I am thankful to Amanda Winegardner and Lucie Kuczynski who ex‐
perimented with this testing procedure and computed it on real data 
during the development phase of this paper and to Daniel Borcard 
and Marie‐Hélène Brice who provided useful comments on the man‐
uscript before submission. Lucie Kuczynski suggested the acronym 
TBI for the new method. I am also thankful to Daniel Borcard who 
revised a preliminary version of the manuscript and to Joseph R. 
Bennet and three anonymous reviewers who provided helpful com‐
ments on the submitted manuscript. This research was supported 
by Natural Sciences and Engineering Research Council of Canada 
(NSERC) research grant no. 7738 to P. Legendre.

CONFLIC T OF INTERE S T

None declared.

AUTHOR CONTRIBUTIONS

P. Legendre designed the methods described in this paper, pro‐
grammed the software, conducted the analyses of the numerical 
examples and the simulation study, and wrote the manuscript.

DATA ACCE SSIBILIT Y

The data used in the ecological applications are publicly available in 
the references provided.

ORCID

Pierre Legendre   https://orcid.org/0000-0002-3838-3305 

R E FE R E N C E S

Anderson, M. J. (2001). Permutation tests for univariate or multivariate 
analysis of variance and regression. Canadian Journal of Fisheries and 
Aquatic Sciences, 58, 626–639. https://doi.org/10.1139/f01-004

Anderson, M. J. (2006). Distance‐based tests for homogeneity of 
multivariate dispersions. Biometrics, 62, 245–253. https://doi.
org/10.1111/j.1541-0420.2005.00440.x

Anderson, M. J., Crist, T. O., Chase, J. M., Vellend, M., Inouye, B. D., 
Freestone, A. L., … Swenson, N. G. (2011). Navigating the multiple 
meanings of β diversity: A roadmap for the practicing ecologist. 
Ecology Letters, 14, 19–28.

Angeler, D. G., Viedma, O., & Moreno, J. M. (2009). Statistical perfor‐
mance and information content of time lag analysis and redundancy 
analysis in time series modeling. Ecology, 90, 3245–3257. https://doi.
org/10.1890/07-0391.1

Baselga, A. (2010). Partitioning the turnover and nestedness compo‐
nents of beta diversity. Global Ecology and Biogeography, 19, 134–143. 
https://doi.org/10.1111/j.1466-8238.2009.00490.x

Baselga, A. (2012). The relationship between species replace‐
ment, dissimilarity derived from nestedness, and nestedness. 
Global Ecology and Biogeography, 21, 1223–1232. https://doi.
org/10.1111/j.1466-8238.2011.00756.x

Brown, B. E., & Suharsono. (1990). Damage and recovery of coral reefs 
affected by El Niño related seawater warming, in the Thousand 
Islands, Indonesia. Coral Reefs, 8, 163–170.

Chao, A., & Chiu, C.‐H. (2016). Bridging the variance and diversity de‐
composition approaches to beta diversity via similarity and differ‐
entiation measures. Methods in Ecology and Evolution, 7, 919–928. 
https://doi.org/10.1111/2041-210X.12551

Clements, F. E. (1916). Plant succession: An analysis of the development of 
vegetation. Washington, DC: Carnegie Institution of Washington.

Dray, S., Bauman, D., Blanchet, G., Borcard, D., Clappe, S., Guénard, G., … 
Wagner, H. H. (2019) adespatial: Multivariate multiscale spatial anal‐
ysis. R package version 0.3‐3. Retrieved from https://cran.r-project.
org/package=adespatial

Edgington, E. S. (1995). Randomization tests, 3rd ed. New York, NY: 
Marcel Dekker.

Gleason, H. A. (1926). The individualistic concept of the plant asso‐
ciation. Bulletin of the Torrey Botanical Club, 53, 7–26. https://doi.
org/10.2307/2479933

Gower, J. C. (1966). Some distance properties of latent root and vec‐
tor methods used in multivariate analysis. Biometrika, 53, 325–338. 
https://doi.org/10.1093/biomet/53.3-4.325

Hallett, L. M., Avolio, M. H., Carroll, I. T., Jones, S. K., MacDonald, A. A. 
M., Flynn, D. F. B., …Jones, M. B. (2018). codyn: Community dynam‐
ics metrics. R Package Version, 2.0. Retrieved from https://github.
com/NCEAS/codyn

Hallett, L. M., Jones, S. K., MacDonald, A. A. M., Jones, M. B., Flynn, 
D. F. B., Ripplinger, J., … Collins, S. L. (2016). codyn: An R package 
of community dynamics metrics. Methods in Ecology and Evolution, 7, 
1146–1151.

Hubbell, S. P. (2001). The unified neutral theory of biodiversity and biogeog‐
raphy. Princeton, NJ: Princeton University Press.

Koleff, P., Gaston, K. J., & Lennon, J. J. (2003). Measuring beta diversity 
for presence‐absence data. Journal of Animal Ecology, 72, 367–382. 
https://doi.org/10.1046/j.1365-2656.2003.00710.x

Kuczynski, L., Legendre, P., & Grenouillet, G. (2018). Concomitant impacts 
of climate change, fragmentation and non‐native species have led to 
reorganization of fish communities since the 1980s. Global Ecology 
and Biogeography, 27, 213–222. https://doi.org/10.1111/geb.12690

Laliberté, E., & Legendre, P. (2010). A distance‐based framework for 
measuring functional diversity from multiple traits. Ecology, 91, 299–
305. https://doi.org/10.1890/08-2244.1

Legendre, P. (1993). Spatial autocorrelation: Trouble or new paradigm? 
Ecology, 74, 1659–1673.

Legendre, P. (2014). Interpreting the replacement and richness differ‐
ence components of beta diversity. Global Ecology and Biogeography, 
23, 1324–1334. https://doi.org/10.1111/geb.12207

Legendre, P., & Anderson, M. J. (1999). Distance‐based redundancy 
analysis: Testing multispecies responses in multifactorial eco‐
logical experiments. Ecological Monographs, 69, 1–24. https://doi.
org/10.1890/0012-9615(1999)069[0001:DBRATM]2.0.CO;2

Legendre, P., & Borcard, D. (2018). Box‐Cox‐chord transformations 
for community composition data prior to beta diversity analysis. 
Ecography, 41, 1–5. https://doi.org/10.1111/ecog.03498

Legendre, P., & Condit, R. (2019). Spatial and temporal analysis of beta 
diversity in the Barro Colorado Island forest dynamics plot, Panama. 
Forest Ecosystems. https://doi.org/10.1186/s40663-019-0164-4

Legendre, P., & De Cáceres, M. (2013). Beta diversity as the variance of 
community data: Dissimilarity coefficients and partitioning. Ecology 
Letters, 16, 951–963. https://doi.org/10.1111/ele.12141

Legendre, P., De Cáceres, M., & Borcard, D. (2010). Community sur‐
veys through space and time: Testing the space‐time interaction 

https://orcid.org/0000-0002-3838-3305
https://orcid.org/0000-0002-3838-3305
https://doi.org/10.1139/f01-004
https://doi.org/10.1111/j.1541-0420.2005.00440.x
https://doi.org/10.1111/j.1541-0420.2005.00440.x
https://doi.org/10.1890/07-0391.1
https://doi.org/10.1890/07-0391.1
https://doi.org/10.1111/j.1466-8238.2009.00490.x
https://doi.org/10.1111/j.1466-8238.2011.00756.x
https://doi.org/10.1111/j.1466-8238.2011.00756.x
https://doi.org/10.1111/2041-210X.12551
https://cran.r-project.org/package=adespatial
https://cran.r-project.org/package=adespatial
https://doi.org/10.2307/2479933
https://doi.org/10.2307/2479933
https://doi.org/10.1093/biomet/53.3-4.325
https://github.com/NCEAS/codyn
https://github.com/NCEAS/codyn
https://doi.org/10.1046/j.1365-2656.2003.00710.x
https://doi.org/10.1111/geb.12690
https://doi.org/10.1890/08-2244.1
https://doi.org/10.1111/geb.12207
https://doi.org/10.1890/0012-9615(1999)069[0001:DBRATM]2.0.CO;2
https://doi.org/10.1890/0012-9615(1999)069[0001:DBRATM]2.0.CO;2
https://doi.org/10.1111/ecog.03498
https://doi.org/10.1186/s40663-019-0164-4
https://doi.org/10.1111/ele.12141


3514  |     LEGENDRE

in the absence of replication. Ecology, 91, 262–272. https://doi.
org/10.1890/09-0199.1

Legendre, P., & Gauthier, O. (2014). Statistical methods for temporal and 
space‐time analysis of community composition data. Proceedings of 
the Royal Society B: Biological Sciences, 281, 20132728. https://doi.
org/10.1098/rspb.2013.2728

Legendre, P., & Legendre, L. (2012). Numerical ecology, 3rd English edi‐
tion. Amsterdam, The Netherlands: Elsevier Science BV.

Legendre, P., & Salvat, B. (2015). Thirty‐year recovery of mollusc commu‐
nities after nuclear experimentations on Fangataufa atoll (Tuamotu, 
French Polynesia). Proceedings of the Royal Society B: Biological 
Sciences, 282, 20150750. https://doi.org/10.1098/rspb.2015.0750

McEwan, R. W., Dyer, J. M., & Pederson, N. (2011). Multiple interacting 
ecosystem drivers: Toward an encompassing hypothesis of oak for‐
est dynamics across eastern North America. Ecography, 34, 244–256. 
https://doi.org/10.1111/j.1600-0587.2010.06390.x

Odum, E. P. (1950). Bird populations of the Highlands (North Carolina) 
Plateau in relation to plant succession and avian invasion. Ecology, 31, 
587–605. https://doi.org/10.2307/1931577

Oksanen, J., Blanchet, G., Friendly, M., Kindt, R., Legendre, P., McGlinn, 
D., … Wagner, H. (2017). vegan: Community ecology package. R 
package version 2.4‐4. Retrieved from https://cran.r-project.org/
package=vegan

Orlóci, L. (1978). Multivariate analysis in vegetation research, 2nd ed. The 
Hague, The Netherlands: Dr. W. Junk B. V.

Pickett, S. T. A., Collins, S. L., & Armesto, J. J. (1987). Models, mechanisms 
and pathways of succession. The Botanical Review, 53, 335–371. 
https://doi.org/10.1007/BF02858321

Podani, J., Ricotta, C., & Schmera, D. (2013). A general framework for an‐
alyzing beta diversity, nestedness and related community‐level phe‐
nomena based on abundance data. Ecological Complexity, 15, 52–61. 
https://doi.org/10.1016/j.ecocom.2013.03.002

Podani, J., & Schmera, D. (2011). A new conceptual and methodological frame‐
work for exploring and explaining pattern in presence‐absence data. Oikos, 
120, 1625–1638. https://doi.org/10.1111/j.1600-0706.2011.19451.x

Ružička, M. (1958). Anwendung mathematisch‐statisticher Methoden in 
der Geobotanik (synthetische Bearbeitung von Aufnahmen). Biologia, 
Bratislava, 13, 647–661.

Schaefer, J., Gido, K., & Smith, M. (2005). A test for community change 
using a null model approach. Ecological Applications, 15, 1761–1771. 
https://doi.org/10.1890/04-1490

Shimadzu, H., Dornelas, M., & Magurran, A. E. (2015). Measuring tem‐
poral turnover in ecological communities. Methods in Ecology and 
Evolution, 6, 1384–1394. https://doi.org/10.1111/2041-210X.12438

van den Brink, P. J., & ter Braak, C. J. F. (1999). Principal response curves: 
Analysis of time‐dependent multivariate responses of biological 
community to stress. Environmental Toxicology and Chemistry, 18, 
138–148. https://doi.org/10.1002/etc.5620180207

Vellend, M. (2016). The theory of ecological communities. Princeton, NJ: 
Princeton University Press.

Warwick, R. M., Clarke, K. R., & Suharsono. (1990). A statistical analy‐
sis of coral community responses to the 1982–83 El Niño in the 
Thousand Islands, Indonesia. Coral Reefs, 8, 171–179.

Whittaker, R. H. (1972). Evolution and measurement of species diversity. 
Taxon, 21, 213–251. https://doi.org/10.2307/1218190

Winegardner, A. K., Legendre, P., Beisner, B. E., & Gregory‐Eaves, I. 
(2017). Diatom diversity patterns over the past c. 150 years across 
the conterminous United States of America: Identifying mecha‐
nisms behind beta diversity. Global Ecology and Biogeography, 26, 
1303–1315.

SUPPORTING INFORMATION

Additional supporting information may be found online in the 
Supporting Information section at the end of the article.     

How to cite this article: Legendre P. A temporal beta‐
diversity index to identify sites that have changed in 
exceptional ways in space–time surveys. Ecol Evol. 
2019;9:3500–3514. https://doi.org/10.1002/ece3.4984

https://doi.org/10.1890/09-0199.1
https://doi.org/10.1890/09-0199.1
https://doi.org/10.1098/rspb.2013.2728
https://doi.org/10.1098/rspb.2013.2728
https://doi.org/10.1098/rspb.2015.0750
https://doi.org/10.1111/j.1600-0587.2010.06390.x
https://doi.org/10.2307/1931577
https://cran.r-project.org/package=vegan
https://cran.r-project.org/package=vegan
https://doi.org/10.1007/BF02858321
https://doi.org/10.1016/j.ecocom.2013.03.002
https://doi.org/10.1111/j.1600-0706.2011.19451.x
https://doi.org/10.1890/04-1490
https://doi.org/10.1111/2041-210X.12438
https://doi.org/10.1002/etc.5620180207
https://doi.org/10.2307/1218190
https://doi.org/10.1002/ece3.4984

