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Acoustic seabed classification: improved
statistical method

Pierre Legendre, Kari Elsa Ellingsen, Erik Bjørnbom, and Philippe Casgrain

Abstract: Huge amounts of money will be spent by industrialized nations during the next decades to obtain detailed
maps of continental shelf seabeds. These maps, which will allow a more rational exploitation of the sea floor, are
needed to assess the impact of anthropic activities. The statistical method of analysis of echosounder backscatter data
described in this paper presents several improvements over existing techniques. The steps are as follows. (i) The
backscatter data are decomposed mathematically into a number of quantitative variables, which are subjected to
principal component analysis (PCA). (ii) Principal components representing 95–99% of the variation are used in a K-
means partitioning procedure. A statistical criterion indicates what the number of groups is that best reflects the
variability of the data. (iii) The groups are then plotted on maps of the survey area. Insofar as the mathematical
decomposition produces variables that reflect the variations of the physical nature and composition of the seabed, the
classes of the partition will correspond to different seabed types. Free software (The Q Package) implementing this
method is available at http://www.fas.umontreal.ca/biol/legendre/.

Résumé : Au cours des prochaines décennies, des sommes considérables seront consacrées par les nations industriali-
sées à la cartographie détaillée des plateaux continentaux. Ces cartes, qui permettront une exploitation plus rationnelle
des fonds marins, sont nécessaires pour évaluer l’impacts des activités anthropiques sur ces mêmes fonds. La méthode
statistique d’analyse de l’onde réfléchie secondaire des sonars décrite dans cet article propose plusieurs améliorations
par rapport aux méthodes actuellement sur le marché. Les étapes sont les suivantes : (i) l’onde réfléchie secondaire du
sonar est décomposée en une série de variables quantitatives qui sont soumises à l’analyse en composantes principales
(ACP). (ii) Les composantes principales représentant de 95 à 99 % de la variance sont utilisées pour obtenir une
partition des points de sondage en groupes. Un critère statistique permet de déterminer quel est le nombre optimal de
groupes pour rendre compte de la variabilité des données. (iii) La classification est reportée sur une carte de la région
à l’étude. Si la décomposition mathématique de l’onde réfléchie secondaire produit des variables qui reflètent les
variations de la nature et de la composition physique du fond, les classes de la partition correspondront à différents
types de fond. Un programme d’ordinateur (The Q Package) est gratuitement à la disposition des utilisateurs à
l’adresse http://www.fas.umontreal.ca/biol/legendre/.
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Introduction

The future of ecology as a partner for economic develop-
ment lies in the ability of ecologists to develop means, tools,
and methods for rapid assessment of impacts over broad
expanses, such as whole embayments, gulfs, or continental
shelves in aquatic ecosystems. This paper concerns remote

sensing of coastal seabed using an acoustic bottom classifica-
tion system for habitat mapping. Acoustic techniques allow
managers to quickly map extensive seabed surfaces; they may
eventually be used to map whole continental shelves. This in-
formation is urgently needed to assess the impact of coastal
urban and industrial developments.

Classification method

This paper presents a method of statistical analysis of
echosounder backscatter data, which includes several im-
provements over existing techniques. The (free) software im-
plementing this method is described at the end of this paper.
Our test data consist in a file of first echosounder returns
(Fig. 1) decomposed into 166 variables using the QTC
VIEWTM acoustic bottom classification system (Prager et al.
1995). Alternative methods (and software) for decomposing
backscatters into sediment-related variables have been pro-
posed, for example, by Chivers et al. (1990) and Clarke and
Hamilton (1999). Software for statistical processing of the
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QTC variables is also available from the Quester Tangent
Corporation (QTC 1999, 2000). The steps of our analysis
follow.

Step 1: reduction of data dimensionality
The 166 QTC variables are very highly collinear; in our ex-

ample data, the mean of the absolute values of the correlation
coefficients was 0.41 with values of r ranging from –0.9999
to +0.9999. For highly collinear data, a commonly used
method to condense the variance into a small number of
variables, prior to classification, is principal component
analysis (PCA); this is the method also used in the QTC
software. PCA computes a smaller set of new, linearly inde-
pendent variables, called principal components (PCs), that
account for most of the variance in the original data. The re-
mainder of the variance is considered the error portion of the
data (noise). We carried out a detailed comparison of classi-
fication results based on the whole data set, on the one hand,

and on a small number (2–8) of PCs accounting for most for
the variance, on the other hand. Comparable K-means parti-
tioning results (see below) were obtained by using a number
of PCs accounting for 95–99% of the total variance in the
data. So, variance condensation into a small number of PCs
is a good method if a sufficient number of PCs are used for
classification. For the test data, the first three PCs accounted
for 96.2% of the total variance. Using seven PCs would have
accounted for 99.2% of the variance. For other QTC data
sets (J.E. Hewitt, S.F. Thrush, P. Legendre, J. Ellis, and M.
Morrison, National Institute of Water and Atmospheric Re-
search (NIWA), P.O. Box 11-115, Hamilton, New Zealand,
unpublished data), the first three PCs accounted for 90–97%
of the variance of the 166 QTC variables; 3–5 PCs were nec-
essary to reach 95% of the variance, and 6–10 to reach 99%.

Step 2: K-means partitioning
A (crisp) partition is a division of the “objects” under

Fig. 1. (a) Data acquisition: the echosounder signal is decomposed mathematically into a number of variables that will be used for
classification. Each acoustic record is geo-referenced for mapping. (b) Analogue signal from the echosounder. The first backscatter
portion of each “ping” is analysed in the present paper.
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study into nonoverlapping subsets. Agglomerative clustering
methods produce nested partitions, whereas partitioning
methods produce partitions into a predetermined number of
groups (K). For n objects, most agglomerative clustering
algorithms require the computation of a (n × n) similarity or
distance matrix; this is impractical for large data sets like
sonar data. Hence, we turned to partitioning methods. K-
means is the most widely used numerical method for parti-
tioning data. The K-means problem consists of dividing a set
of multivariate data into nonoverlapping groups in such a
way as to minimize the sum (across the groups) of the sums
of squared residual distances to the group centroids; this sta-
tistic is also called the sum of within-group sums-of-squares,
the error sum-of-squares, or the sum of squared errors
(SSE). SSE is the global optimality criterion, or objective
function, implemented in K-means algorithms. Hundreds of
algorithms have been proposed in the literature to solve the
K-means problem.

We implemented the following two-step iterative least-
squares algorithm: (i) compute cluster centroids and use
them as new cluster seeds; and (ii) assign each object to the
nearest cluster seed. This algorithm is described in several
books; for example, Legendre and Legendre (1998).

Since K-means is a NP-hard problem (a category of very
hard problems in computer science), no algorithm can guar-
antee that it will find the optimum partition every time. To
increase the likelihood of finding this partition, two features
have been added to the basic algorithm. (i) The program was
made to proceed in a cascade, finding first a partition into a
number of groups larger than what is needed (e.g., starting at
10 groups). It is easier to find the best partition for a large
number than for a smaller number of groups. When this par-
tition has been found, the two groups whose centroids are
the closest in multivariate space are fused and the algorithm
iterates again to optimize the SSE function. This is repeated
as far as the user wants it to go (e.g., until a partition into
two groups is found). (ii) The whole classification process
(e.g., from 10 to two groups) can be repeated a number of
times (e.g., 25 or 50 times, as specified by the user) using
different random starting configurations. For each number of
groups (e.g., for K = 10, K = 9,…,K = 2 groups), the solu-
tion where SSEK is minimum is retained and written to the
output file.

Step 3: how many acoustic classes?
How to decide on the optimal number of acoustic classes?

A large number of criteria have been proposed in the statisti-
cal literature to decide on the correct number of groups in
cluster analysis. A simulation study by Milligan and Cooper
(1985) compared 30 of these criteria. The best one turned
out to be the Calinski and Harabasz (1974) criterion, called
C-H in the present paper. C-H is simply the F-statistic of
multivariate analysis of variance and canonical analysis. F is
the ratio of the mean square for the given partition divided
by the mean square for the residuals. To help users decide
on the best number of groups present in a data set, our K-
means program computes the C-H criterion; the number of
classes for which C-H is maximum is the best one in the
least-squares sense.

One cannot assume that the best number of groups is
small in acoustic sediment classification. Using the C-H cri-

terion, J.E. Hewitt, S.F. Thrush, P. Legendre, J. Ellis, and
M. Morrison (NIWA, P.O. Box 11-115, Hamilton, New Zea-
land, unpublished data) found cases where the best number
of groups was from K = 2 to K = 19, depending on the data
set.

Step 4: other computation modules
A drawing module allows users to produce simple maps

from the K-means partitioning results and the geographic co-
ordinates of the individual acoustic records. Figure 2 pres-
ents examples of these maps (printed here in black only);
they may include colour, symbols, 95% confidence ellipses
around groups, etc. The maps can be copied and pasted in
one’s favourite drawing program and saved as standard EMF
(Enhanced MetaFile) format.

Another module of the package computes the “geographic
consistency” of the K-means solutions. We want to know if
the groups obtained by partitioning consist of geographic
neighbours; if they do not, we want to know how close they
are to a “geographically consistent” solution in which each
group would only contain points that are contiguous in
space. First, one computes a matrix of geographic contiguity
among points, using one of a number of connection net-
works described, for instance, in Legendre and Legendre
(1998). The type of connection most often used is the
Delaunay triangulation. Our “Links” module, which can plot
the connection network on a map of the data points, is based
upon a Delaunay algorithm by Shewchuk (1996). Then, one
employs the “GeoConsist” module: using the list of connec-
tions between geographic neighbours, this program subdi-
vides each group obtained by K-means partitioning into
geographically connected subsets of points, using a simpli-
fied constrained clustering algorithm (Legendre and
Legendre 1998). One obtains a new partition into a larger
number of groups that are nested into the groups of the K-
means partition. The Rand index (Rand 1971) between the
original and spatially constrained partitions is computed as
an index of geographic consistency. The closer this index is
to 1, the greater is the geographic consistency of the original
K-means solution. Membership of the points in the geo-
graphically constrained groups is also available for mapping.

Example data

On 16 August 1999, acoustic data were collected in the
Forty Baskets Beach area of Sydney Harbour, Australia
(33°48′S, 151°16′ E). We used a Navisound 50 echosounder
at frequency 50 kHz (transducer beam width 13.5°) con-
nected to the QTC VIEW™ acoustic seabed classification
system (CAPS version 3.25, QTC IMPACT™ version 1.0
Beta of Quester Tangent Corporation), which was used to
decompose the backscatter waves mathematically into 166
variables (Fourier analysis of the response wave, 64 vari-
ables; wavelet analysis, 64 variables; 38 other variables de-
scribing the shape of the first acoustic backscatter based
upon the original and cumulative forms) (Fig. 1). The trans-
ducer was mounted on an over-the-side strut on the survey
vessel. The positioning equipment was a differential GPS
(Global Positioning System). The recorded data were cor-
rected and validated using a “Parser” procedure, which is
part of our software. The test data set consisted of 1478 data

© 2002 NRC Canada
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lines (objects, or records) and 166 QTC variables, plus geo-
graphic positions and depths. Since three of the QTC vari-
ables did not vary at all, they were eliminated from the data
set, which was thus reduced to 163 variables.

K-means divided the acoustic data into a series of bands
that follow the depth gradient (Fig. 2). Unfortunately, we do
not have geographically localized visual observations to vali-
date the classification results, but divers reported that the
sediment changed along this gradient and that seagrass
formed a bed parallel to the coast. The C-H criterion indi-
cated that the partition into three groups was the best one in
the least-squares sense. As a statistical model, this partition
explained 79.8% of the variance in the first three PCs, or
76.7% of the variance in the 163 original QTC variables.
Acoustic classification results should be subjected to ground
truthing, which consists of relating the acoustic classes to vi-
sually observed data describing the seabed. J.E. Hewitt, S.F.
Thrush, P. Legendre, J. Ellis, and M. Morrison (NIWA, P.O.
Box 11-115, Hamilton, New Zealand, unpublished data) have
done such a validation study, using underwater video data, of
an acoustic seabed classification obtained from QTC variables
analysed by our software.

Program and report

A computer package (The Q Package) has been developed,
with the financial help of NIWA of New Zealand, to implement
the seabed classification method described in this paper and an-
alyze large data sets. In its present state of development, it can
handle 10 000 data points in real time and 100 000 points with
a small delay, using a recent Windows-based operating system.
Any computer capable of running Microsoft Windows 95 or
later versions (including Windows NT and Windows 2000) can
be used to run the Q Package. A low-end Pentium with 32 Mb
of RAM and Windows 95 is powerful enough to run the pro-
gram, and is perfectly adequate in most cases. The package,
which comes complete with a user’s manual, is available free
of charge at http://www.fas.umontreal.ca/biol/legendre/.

A report, available from the first author, presents a user’s
comparison of the method described in this paper with that of
the QTC VIEW™ CAPS and QTC IMPACT™ software of
Quester Tangent Corporation. The report shows that PCA fol-
lowed by K-means partitioning produces statistically better re-
sults than the classification method implemented in the QTC
software with which we experimented during the SCALE EX-
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Fig. 2. Map of the Forty Baskets Beach sampling area (Sydney Harbour, Australia: 33°48′S, 151°16′ E) showing the K-means partition
of the acoustic records into 2–5 groups (symbols) based upon the first three principal components (96.2% of the variance in the data).
These partitions explain 58.4, 76.7, 81.4, and 84.1%, respectively, of the variance in the data. The partition into three groups is the one
for which the Calinski-Harabasz (C-H) criterion is maximum.
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PERT workshop (Spatial Comparisons Across Large Estu-
aries: EXPerimental Evaluation of Recent Technologies)
organized and hosted by Professor A.J. Underwood at the
University of Sydney, Australia, 2–22 August 1999.
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DISCUSSION / DISCUSSION

Comment on “Acoustic seabed classification:
improved statistical method”1

J.M. Preston and R.L. Kirlin

1300In a discussion of methods for acoustic seabed classifica-
tion, Legendre et al. (2002) claim to offer improvements over
existing techniques and assert that their method “produces
statistically better results than the classification method im-
plemented in the QTC [Quester Tangent Corporation] soft-
ware”. Reasons for this assertion are not given in that paper
but are given in an unpublished document. In this paper, we
examine the basis for the assertion and discuss whether it
should be accepted.

The method of Legendre et al. (2002) implements a K-
means partitioning by an iterative process. They claim this as
an advantage over QTC; however, QTC also implements a K-
means partitioning with an iterative process (see, e.g., Preston
et al. 2001), so this cannot be the explanation. Choosing the
optimal number of clusters can be problematic, but Legendre
et al. report differences between their methods and QTC even
when both are computing with the same number of clusters,
so the explanation cannot lie entirely here. What is left?

The answer, it appears, is that Legendre et al. (2002) wish to
minimize the within-group sums of squares using a homoge-
neous measure of distance to the centre of a cluster (squared
Euclidean distances), whereas QTC uses a likelihood-based
measure in which the distance to the centre of any cluster is
scaled by the variance of that cluster. A one-dimensional ex-
ample illustrates the point at issue. Suppose we have a popu-
lation that is an equal mixture of two Gaussian distributions:
A, which is distributed as N(0,(0.5)2), and B ~ N(2,(0.1)2).
How do we assign an observation at 1.5? Legendre et al.
would say that it is a distance of 0.5 from the centre of B and
1.5 from the centre of A and therefore should be assigned to
B. QTC would say that is it 5 standard deviations from the
centre of B and 3 standard deviations from the centre of A
and therefore should be assigned to A. In the example that we
have sketched, the statement “x is from A and x = 1.5” has a
higher probability density than “x is from B and x = 1.5”; that
is, our method has a higher probability of making a correct
assignment to a component of the mixture. Therefore, one

cannot unambiguously identify Legendre et al.’s “best in the
[homogeneous] least-squares sense” with best in the statistical
sense. Attempts to prove the latter fail because any statistical
test is also based on either homogeneous or variance-based
measures; if the clustering method and the test use the same
measure, the test scores will often be higher for that reason
alone.

The paragraphs above summarize our comment.
Legendre et al.’s (2002) claim to “statistically better re-
sults” is without support, arising as it did from applying a
test that used squared Euclidean distances to two clustering
methods, one using squared Euclidean distances and one
using a likelihood-based measure. What remains is to pro-
vide a justification for using non-Euclidean measures for
clustering and to extend this example to more dimensions.

A reasonable principle for choosing the class assignment
is the maximum a posteriori probability (MAP). In other
words, a vector x is observed and is to be assigned to one of
q classes {ω1,ω2,…,ωq}. MAP selects the class of maximum
a posteriori probability from the candidates as

(1) ωk = arg max
, , ,k q=1 2 �

P(ωk |x)

where P(ωk |x) is the a posteriori probability for class ωk.
From Bayes’ theorem, the a posteriori probability can be
written as

(2) P(ωk |x) =
p P w

p
k k( | ) ( )
( )

x
x

ω

where p(x|ωk) is the density of the data given that they are
drawn from ωk, P(ωk) is the a priori probability for ωk, and
p(x) is the marginal density of observed data x. If the a pri-
ori probability P(ωk) is uniform, the MAP rule becomes

(3) ωk = arg max
, , ,k q=1 2 �

p(x|ωk)
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which is the maximum likelihood (ML) selection. Because
p(x) does not depend on class assignments, it drops out of
the selection computations and each vector is assigned to
cluster ωi if (Cover and Hart 1967)

(4) P(ωi)p(x|ωi) > P(ωj )p(x|ωj ), �j ≠ i

It is usual to assume a multivariate normal density (Fraley
and Raftery 1998):

(5) p(x|ωi) =

1
2( ) | |

exp[ / ( ) ( )]
/ /π M

i
i

T
i i2 1 2
11 2

C
x m C x m− − −−

where M is the dimensionality, and mi and Ci are the esti-
mated mean and covariance of cluster wi. Legendre et al.
(2002) and QTC both cluster in three-dimensional space
called Q space, thus M = 3.

We can straightforwardly estimate the mean, covariance,
and prior probability of the ith class if the marginal density
of x,

(6) p(x) =

P
i

q

i M
i

i
T

i i
=

−∑ − − −
1

2 1 2
11 2( )

( ) | |
exp[ / ( ) ( )

/ /
ω

π
1

2 C
x m C x m ]

can be appropriately simplified. The required simplification
results when the clusters or modes of the Gaussian mixture
are well separated. In that case p(x) is well approximated in
the region of the ith cluster by

(7) p(x) =

P i
M

i
i

T
i i

( )
( ) | |

exp[ / ( ) ( )],
/ /

ω
π2 2 1 2

11 2
C

x m C x m− − −−

x ∈ω i

and we can assume that all samples of x assigned to cluster i
have been drawn only from the approximate distribution in
eq. 7. In this case, we can obtain ML estimates of the re-
quired parameters using only samples of x assigned to clus-
ter i.

When selecting the maximum under eq. 4, it is convenient
to minimize the logarithm of the reciprocal of the left-hand
side, log being a monotonic function. This gives what may
be called a Bayesian metric:

(8) di(x) = –logP(ωi) – log(p(x|ωi)) =

–logP(ωi) + ½log|Ci| + ½ (x – mi)T Ci
−1 (x – mi)

Two simplifications of eq. 8 deserve mention. The Euclid-
ean metric, as used by Legendre et al. (2002), is the simplifi-
cation of eq. 8 that assumes equal P(ωi) and that the
covariance matrices are equal, constant, and diagonal. Be-
cause assignments are based on minimization across classes,
class-independent terms and constant factors are dropped,
giving

(9) di(x) = (x – mi)T(x – mi) (Euclidean)

Secondly, if we continue to use equal priors P(ωi), but
now allow the covariance matrices to differ but with approx-
imately equal determinants, we have the weighted sum of
squares metric

(10) di(x) = (x – mi)T Ci
−1 (x – mi) (Mahalanobis)

The general case, using all terms of the Bayesian metric
(eq. 8), requires estimates of the a priori probabilities, as
well as the means and covariances of each cluster. QTC has
implemented these estimates iteratively, with an outer loop
for estimating priors and covariances and an inner K-means
loop that adjusts assignments and cluster means. This is an
optimal process under the MAP criterion, the only approxi-
mation being that in eq. 7 which approximates the whole
density of x by its component due to class i alone, which is
valid under the assumption of well-separated classes or mix-
ture components.

For classifying regions of acoustic similarity, as part of acous-
tic sediment classification, we have described three metrics: the
general case and two simplifications. Which gives optimal re-
sults? This will likely remain an open question. We have found
very few statistical tests or clustering processes that work well
with both simulated and real data sets and thus have come to
believe that comparison with ground truth is the most meaning-
ful basis for comparisons. However, it is unusual to have ground
truth that is adequate in quantity and scope. For example, sur-
face roughness can affect acoustic character but is destroyed
when sampling with a grab. Over the years, the QTC imple-
mentation described above has repeatedly been found to give
practical, useful, and accurate classes. Some recent examples
are described by Morrison et al. (2001), Anderson (2001, 2002),
and Ellingsen et al. (2002).
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DISCUSSION / DISCUSSION

Reply to the comment by Preston and Kirlin on
“Acoustic seabed classification: improved
statistical method”1

Pierre Legendre

Legendre 1305Legendre et al. (2002) described a statistical method for
analysing echosounder backscatter data, which consisted of
the following steps: the backscatter data were decomposed
mathematically into a number of quantitative variables,
which were subjected to principal component analysis (PCA).
Principal components representing 95–99% of the variation
were then used in a K-means partitioning procedure. A least-
squares statistical criterion indicated the number of groups
that best reflected the variability of the data. The groups
were then plotted on maps of the survey area. Insofar as the
mathematical decomposition of the backscatter echo pro-
duced variables that reflected the variation of the physical
nature and composition of the seabed, the classes of the par-
tition were likely to correspond to seabed types. This proce-
dure presented several improvements over the Quester
Tangent Corporation’s QTC VIEW™ acoustic bottom classi-
fication method (Prager et al. 1995), and it was described in
easy-to-understand terms. Free software implementing this
method — The Q Package for Windows and The R Package
for Macintosh — is available on the Web site http://www.
fas.umontreal.ca/biol/legendre/.

J.M. Preston, from the Quester Tangent Corporation
(QTC), and R.L. Kirlin wrote a comment on that paper, to
which I was invited to reply. I will first address some statis-
tical points in Preston and Kirlin’s note and then go to more
fundamental issues.

Statistical issues

(1) The K-means problem was defined by MacQueen (1967)
as that of partitioning a data set in Euclidean space into
K nonoverlapping groups in such a way as to minimize
the sum (across the groups) of the within-group sums of
squared Euclidean distances to the respective group cen-
troids. The statistical problem had first been stated by
Fisher (1958). What QTC seems to be doing, if I under-
stand their description correctly, is implementing a par-

titioning method based on Mahalanobis distances for
solving the mixture problem, like the one described by
Demers et al. (1992), for instance. So they are imple-
menting a modified form of K-means partitioning. This
does not mean that the results produced by such an al-
gorithm are more meaningful that those of a standard K-
means algorithm.

The description of the classification algorithm imple-
mented by the QTC software, provided by Preston and
Kirlin, is wrapped in Bayesian language. A true
Bayesian approach would require that prior probabilities
be known beforehand; that is not the case in acoustic
seabed classification. What is being described is simply
a two-step iterative algorithm, preserving Mahalanobis
distances, in which objects are assigned to the clusters
and the statistical parameters of the clusters are recom-
puted.

(2) Preston and Kirlin (2003) criticize the closing statement
of our 2002 paper, which read: “The report [Legendre,
unpublished report, available at http://www.fas.umontreal.ca/
biol/legendre/] shows that PCA followed by K-means
partitioning produces statistically better results than the
classification method implemented in the QTC soft-
ware…”. The sentence should have read: “… statisti-
cally better results in the least-squares sense…”. The
statement was based on results presented in the unpub-
lished report and summarized in the following para-
graphs.

On 16 August 1999, acoustic data were collected in the
Forty Baskets Beach area of Sydney Harbour, Australia
(33°48′ S, 151°16′ E). We used a Navisound 50 echo
sounder (Navitronic Systems AS, Hasselager, Denmark)
at frequency 50 kHz (transducer beam width 13.5°)
connected to the QTC VIEW™ acoustic seabed classifica-
tion system (CAPS version 3.25, QTC IMPACT™ ver-
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sion 1.0 Beta). The transducer was mounted on an over-
the-side strut on the survey vessel. The positioning
equipment was a differential GPS (global positioning
system). After validation, the data set consisted of 1478
data lines (objects or records) and 166 QTC variables,
plus geographic positions and depths. Because three of
the QTC variables did not vary at all, they were elimi-
nated from the data set, which was thus reduced to 163
variables. These data were used to illustrate the acoustic
seabed classification method described in Legendre et
al. (2002).

The first three principal components accounted for 96.2%
of the variance in the QTC variables. Using seven prin-
cipal components would have accounted for 99.2% of
the variance. For fairness of comparison, I only used the
first three principal components in the comparison of
partitions, because this is what the QTC software uses.
The data were subdivided into groups using the proce-
dure outlined in the QTC manuals (QTC 1999, 2000).
The score value was used to determine which class
should be split next. As the classes were subdivided, the
total score decreased; however, at split level seven (i.e.,
eight groups), the total score increased again. Results of
the partitions into three to seven groups are reported in
Table 1a. In an a posteriori calculation, the Calinski–
Harabasz statistic (described below) selected the partition
into five groups as the best one in the least-squares sense.

The same data were partitioned by K-means, using the
first three principal components (PC1–PC3), as in the
QTC procedure. The K-means program was asked to
produce from ten to two groups; the partitioning was re-
started 10 times. The best partitions into K = 2 to K = 7
groups were retained; some of these results are shown in
Table 1b. The Calinski–Harabasz statistic (see below)
selected the partition into three groups as the best one.
We also computed K-means partitioning for all 163 QTC
variables, without prior filtering by PCA. The Calinski–
Harabasz statistic selected again the partition into three
groups as the best one (Table 1c). This partition is very
similar to that obtained by K-means on PC1–PC3.

The partitioning procedure described in the QTC manu-
als (QTC 1999, 2000), which we used in 1999, is not
the one described by Preston and Kirlin in their Com-
ment (see Seabed classification issues, subsection 1, be-
low). The partitioning results of QTC IMPACT™ and
K-means are compared in Table 1 using common mea-
sures based on least squares: the sum of within-group
sums-of-squares, also called the “sum of squared errors”
(SSE), and the Calinski–Harabasz statistic (C–H) (see
Legendre et al. 2002 (Classification method, step 3), as
well as Seabed classification issues, subsection 4, be-
low). SSE is the global optimality criterion implemented
in K-means algorithms. C–H is a statistical criterion in-
dicating the best number of groups in the least-squares
sense. Least-squares is a widely accepted criterion and
has a long history in statistics (Legendre 1805).

By the SSE criterion, Table 1 shows that the QTC parti-
tion into three groups is not as good as the K-means par-
titions into three groups based on either the first three

principal components or all 163 variables, with respect
to either the first three principal components (32% larger
SSE) or the 163 QTC variables (27% larger SSE). Like-
wise for the partitions into five groups: according to
SSE, the QTC solution into five groups is much worse
than the K-means solutions based on either PC1–PC3 or
all 163 QTC variables, with respect to either the first
three principal components (15% larger SSE) or the 163
variables (10% larger SSE). This shows that the QTC
partitions (even the “best one” into five groups) were
far from being as good, for this example and in the
least-squares sense, as those obtained by K-means.

(3) Preston and Kirlin (2003, their paragraph 3) talk about
performing an (undescribed) test of statistical significance
in their partitioning method. It is not clear to what they are
referring. In any case, there is nothing that can be tested
for significance in K-means or Mahalanobis distance parti-
tioning without invoking an external, independently ob-
tained data set. In particular, the results of a partitioning
procedure should not be tested for significance using the
same data that were used to produce the partition. This
would be a logical mistake, as explained by Milligan
(1996, p. 366) and Legendre and Legendre (1998, p. 379).

(4) Preston and Kirlin (2003) state that “Legendre et al.
(2002) and QTC both cluster in three-dimensional
space”. This is not what we wrote; see Legendre et al.
(2002, abstract and step 1 of the Classification method).
What we recommended was to use as many principal
components as were necessary to explain at least 95%,
and preferably 99%, of the variance of the data. In the
example presented in that paper, three principal compo-
nents accounted for 96.2% of the variance, so we used
three for K-means partitioning. We also reported that in
the analysis of other acoustic seabed data sets, 3–5 PCs
were necessary to reach 95% of the variance and 6–10
to reach 99%. In subsection 2 above, I only used three
principal components in the tables to present a fair com-
parison with the QTC IMPACT™ results, which are
limited to three principal components by design of the
program. Preston et al. (2001) present that as a feature
of the QTC software, but I think it is an objectionable
limitation. This point will be revisited below.

(5) Preston and Kirlin (2003, last paragraph) concluded by
citing a number of papers that allegedly showed that the
QTC classification method “has repeatedly been found to
give practical, useful, and accurate classes”. It is worth
noting that the paper by Morrison et al. (2001), cited by
Preston and Kirlin, was directed at developing a tech-
nique to identify habitat boundaries. Their analysis com-
pared the accuracy of the transitions predicted by the
QTC VIEW™ confidence values with those predicted by
the class-dominance Berge–Parker statistic. Morrison et
al. (2001) concluded that the Berge–Parker index pro-
vided a more consistent transition indicator than the QTC
software confidence values.

Seabed classification issues

(1) People have long wondered what was the classification
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method used by QTC. We asked questions to that effect
to the Quester Tangent Corporation in 1999 but re-
ceived no answer. When they use a method, scientists
need to know, and be able to describe in scientific pa-
pers, how the data are processed. However, there seems
to be greater openness and QTC is now providing more
details of their statistical procedure.

The Comment by Preston and Kirlin (2003) is, to my
knowledge, the first published paper describing the fact
that the QTC software now uses a two-step iterative al-
gorithm preserving Mahalanobis distances. Only now
are we learning from Preston and Kirlin (2003) that the
QTC software is using Mahalanobis distances instead of
Euclidean distances. It is not clear from Preston and
Kirlin’s Comment whether they state that this approach
has been implemented all along the development of the
QTC proprietary software, or not. In any case, the pro-
cedure used in the 1999 CLUSTER™ and the 2000
QTC IMPACT™ programs and described in the soft-
ware manuals (QTC 1999, 2000) was one-dimensional
(the clusters were split along the first principal compo-
nent in earlier versions of the software and along a sin-
gle principal component chosen by the user in the 2000
version). An evolution of the software is summarized in
Preston et al. (2001), who simply described it as “an au-
tomated variant of the k-means clustering method. Clus-
tering is done in the space of the three principal
components and is iterative and stable.” What is now
described in the Preston and Kirlin (2003) Comment
seems to be a new evolution of the QTC software, re-
cently released or perhaps still in the testing phase. In
earlier manuals provided by QTC with their statistical
software (QTC 1999, 2000), there was no indication
about the nature of the calculations leading to partition-
ing, except for the description of how to use it, which
implied a lot of fiddling and left room for personal,
unreplicable decisions on the part of the user.

I also applaud the fact that QTC has recently (Preston et

al. 2001) released some information about the mathe-
matical nature of the 166 variables produced by the
QTC VIEW™ software. The information found in Pres-
ton et al. (2001) provides a general qualitative overview
of the variables generated by QTC VIEW™ from the
backscatter, but the methods by which they are derived
and the quantitative nature of the information remain
unexplained.

(2) In the summer of 1999, Hewitt et al. (J.E. Hewitt, National
Institute of Water and Atmospheric Research, P.O. Box
11-115, Hamilton, New Zealand, unpublished data) carried
out a multiresolution nested survey in Kawau Bay, located
on the northeast coast of North Island, New Zealand. The
spatial distribution of epibenthic communities was studied
using side-scan sonar, single-beam sonar, and video. The
objective was to find relationships between assemblages
visible from the video and the single-beam and (or) side-
scan data that would enable the researchers to use these
devices to both interpolate between and extrapolate from
the restricted video survey. The substrate was soft sedi-
ment in all eight 1-km2 sites investigated. There were rea-
sonably dense but patchy epibenthic communities. At each
site, six pairs of 1-km-long transects were sampled with
single-beam sonar. The transects ran down the depth gradi-
ents. Three of the eight sites could not be videoed because
of the presence of shoals and subsea cables. However at
the other five sites, three 1-km-long video transects were
run in approximately the same positions as three of the
single-beam transects. The sonar was a Simrad EA501P
hydrographic sounder (Simrad AS, Horten, Norway), at-
tached to the boat, and operated at 200 kHz, 250 W trans-
mit power, with a ping rate of 5 s–1, and a fixed beam
width of 7°. This was connected to a QTC VIEW™ series
4 (Collins et al. 1996) data acquisition system. Settings for
the QTC VIEW™ system were a reference depth of 14 m
and a base gain of 15 dB. Sampling resolution varied from
0.37 to 3.0 m2, depending on depth, although more gener-
ally the range was from 1.22 to 2.44 m2. As QTC

No. groups Base: PC1–PC3
Base: 163 QTC
variables

Software and variables K SSE C–H SSE C–H

(a)
QTC (PC1–PC3) 3 55.16 2026 62.94 1781*
QTC (PC1–PC3) 4 1969 1678
QTC (PC1–PC3) 5* 29.85 2182* 37.00 1771*
QTC (PC1–PC3) 6 2053 1620
QTC (PC1–PC3) 7 1921 1484
(b)
K-means (PC1–PC3) 3* 41.86 2904* 49.67 2453*
K-means (PC1–PC3) 5 25.97 2561 33.53 1992
(c)
K-means (163 QTC var.) 3* 41.87 2903* 49.67 2453*
K-means (163 QTC var.) 5 25.97 2563 33.51 1993

Note: SSE, sum of within-group sums-of-squares (small is best, for a given number of groups); C–H,
Calinski–Harabasz statistic (high is best among partitions obtained using the same data). Asterisk (*) indicates
the best number of groups for that classification, according to C–H.

Table 1. Comparison of partitions (least-squares statistics SSE and C–H) using two different
bases: PC1–PC3 (middle) and 163 QTC variables (right).
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VIEW™ uses a stack of five consecutive pings for each
record, at our speed of about 5 knots (2.6 m·s–1), a ping
stack (generally covering 6–12 m) was processed approxi-
mately every 8 m.

The single-beam sonar data were processed as follows:
on the one hand, using the first three principal compo-
nents computed by the proprietary principal component
analysis procedures available in the program QTC IM-
PACT™ (QTC 2000), cluster splits were made in the
principal component data scatter until further splits
failed to reduce the overall variance in an important
way. Splitting decisions were made as detailed in Morri-
son et al. (2001) using inflexion points of the total
scores and the QTC cluster performance index. On the
other hand, principal component analysis was applied to
the 166 variables produced by the QTC VIEW™ system
using the data from all five sites; the number of princi-
pal components required to explain 95% of the variance
was five. Ping scores along those five axes were used in
the K-means partitioning procedure of The Q Package
freeware. The Calinski–Harabasz statistic was used as a
stopping criterion to determine the best number of
groups for each data set, in the least-squares sense.

The QTC IMPACT™ classification into seven groups
was more related to depth than was the six-group K-
means classification. Discriminant analysis identified
that 53% of the points could be allocated correctly to
the QTC IMPACT™ groups based on depth alone, com-
pared with 34% for the K-means classification. As a
consequence, the rest of the analyses reported by Hewitt
et al. (J.E. Hewitt, National Institute of Water and At-
mospheric Research, P.O. Box 11-115, Hamilton, New
Zealand, unpublished data) were based on the K-means
classification, on which depth had less of an influence.

The first principal component of the 166 QTC variables
was highly correlated with depth (Spearman’s r = –0.91).
The relationship found between depth and partition was
not totally avoidable in that study because the transects
ran down depth gradients and the size of the sonar foot-
print is a function of depth. Obviously, the fact that
QTC IMPACT™ only uses three axes in determining its
partition makes it especially sensitive to depth. By op-
position, Legendre et al.’s (2002) K-means partitioning
uses the number of axes necessary to explain 95% (or
99% in other studies) of the variability in the data; that
explains the differences between the results of the two
methods. There is certainly an advantage in using more
than three principal components as the basis for classifi-
cation.

(3) Preston and Kirlin (2003) argue that elongated (hyper-
ellipsoidal) clusters, produced by their Mahalanobis-
based clustering method, are more natural than, and thus
preferable to, the hyperspherical clusters produced by
K-means. There is no particular reason why the data
points (sonar backscatters, decomposed into QTC-
generated variables) should be structured in any particu-
lar way in multivariate space, or in a reduced space of
principal components. Within the range of variation of

the 166 QTC variables, any intermediate value is possi-
ble, so that observations may be found anywhere within
the convex envelope surrounding the data points in multi-
variate space. Natural separation of clusters is predicted,
for instance, by the theory of biological evolution,
which was the starting point for the development of
many of the methods of numerical classification (Sokal
and Sneath 1963), but I do not think any theory predicts
the existence of regions occupied by points, in the space
of acoustic variables, separated by regions where no ob-
servations are possible. Nor do we have a theory that
predicts that the clusters should have any particular
shape. We only want to empirically divide the sonar
backscatters into groups, to simplify their multivariate
description. These groups will be useful if they are found
to correspond to characteristics of the seabed. A divi-
sion of the space into multivariate boxes of equal sizes
would produce a perfectly good classification of the
seabed. This can easily be done, for example, in the
two-dimensional space of RoxAnn™ variables E1 and
E2 developed by Marine Micro Systems Ltd. (Chivers
et al. 1990; E1 and E2 are often referred to as “hard-
ness” and “roughness”), but it would be impractical to
attempt doing it in a space with 166 dimensions. The
reason that we resort to partitioning methods in that
space is because we only need to define boxes that are
occupied by a sufficient number of points; in particular,
we do not want boxes (or classes) containing no point at
all. So it is perfectly reasonable to look for spherical or
hyperspherical K-means clusters in that space. Because
they have borders forming flat interfaces, their shape is
actually hyperpolyhedric rather than hyperspherical. On
these grounds, any other cluster shape is also perfectly
acceptable, including those produced by the Mahalanobis-
based QTC algorithm. In summary, I believe that the
particular metric used for partitioning is not a key point
to insure a useful partition of the data points. The choice
of the variables derived from the sonar backscatter, and
the number of principal components retained for parti-
tioning (see above), are much more important.

(4) There are computational and statistical reasons to prefer
a solution implementing a least-squares criterion. The
first one is that it runs faster than a Mahalanobis-based
algorithm. So, the available computing time can be used
to try more random starts of the algorithm; this, in turn,
increases the chances of finding an optimal partition (in
the least-squares sense). The second reason is that least
squares go well with least squares: because K-means is
a partitioning method optimizing the least-squares crite-
rion, as in multiple regression, it allows the application
of a criterion based on least squares to determine the
“best” number of clusters. In the K-means algorithm
incorporated in The Q Package and The R Package, we
are using the Calinski–Harabasz (1974) criterion (C–H),
which is a least-squares criterion. This criterion is sim-
ply an F statistic of multivariate analysis of variance;
the partition displaying the highest value of this crite-
rion is the best one in the least-squares sense. Actually,
the partitions corresponding to the various maxima of
the graph of the C–H statistics against the number of
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groups may be worth examining and mapping. There is
no direct equivalent of this criterion in Mahalanobis
space, at least none that I know of. I encourage the
Quester Tangent Corporation to offer our procedure as
an option in their computer package. We published our
procedure in the scientific literature (Legendre et al.
2002), so it is not proprietary.

(5) The relative usefulness of the partitions produced by
QTC VIEW™ and our software should be judged by
ground truthing. Because our K-means software is freely
available, users in governmental and private research in-
stitutions, as well as universities, should be encouraged
to analyse QTC data using the QTC VIEW™ classifica-
tion software (based on three PCA axes) and our K-
means software (using a sufficient number of PCA axes
to account for 95% or 99% of the variation in the QTC
data) and to compare the results to ground-truthing data,
as was done by Hewitt et al. (unpublished data; see sub-
section 2 above). Comparisons of this kind are part of
the scientific process needed to determine the usefulness
of acoustics for mapping features of the seabed and, in
particular, the horizontal distribution of ecological com-
munities.

Conclusion

This debate does point to a more general dilemma, where
technological innovation leads to proprietary products that
are used and should be scrutinized by the scientific commu-
nity. Although science is supposed to be based on free and
open communication and debate, companies may choose to
act differently in commercial activities. There is clearly a
need for new and cost-effective surveying devices that en-
able us to image and map large areas of the seafloor in a
routine and timely fashion. Every surveying device has its
limitation and it is important that we recognize them so that
technologies can continue to be developed and improved.
This note is meant to contribute to that process. I also hope
that our paper (Legendre et al. 2002) and freeware (The Q
Package for Windows and The R Package for Macintosh)
will be used for seafloor management, especially by re-
searchers in underdeveloped countries, who can benefit from
freely available software implementing sound statistical pro-
cedures.
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